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Abstract: Recent years have seen an increase in scientific interest in the El Nio/La Nia Southern
Oscillation (ENSO), a quasiperiodic climate phenomenon that takes place throughout the tropical
Pacific Ocean over five years and causes significant harm. It is associated with the warm oceanic
stage known as El Nio and the cold oceanic stage known as La Nia. In this research, the ENSO
model is considered under a fractional operator, which is defined via a nonsingular and nonlocal
kernel. Some theoretical features, such as equilibrium points and their stability, bifurcation maps,
the existence of a unique solution via the Picard–Lindelof approach, and the stability of the solution
via the Ulam–Hyres stability approach, are deliberated for the proposed ENSO model. The Adams–
Bashforth numerical method, associated with Lagrangian interpolation, is used to obtain a numerical
solution for the considered ENSO model. The complex dynamics of the ENSO model are displayed
for a few fractional orders via MATLAB-18.

Keywords: ENSO model; equilibrium points; bifurcation maps; Picard–Lindelof approach;
Lagrangian interpolation

1. Introduction

A mathematical model is an easy and cheap tool with whcih to investigate problems
in ocean and atmospheric engineering [1–3]. Our interest is in the analysis of climate
changes produced via the ocean and the atmosphere. The ENSO phenomenon, which
has been the subject of many studies, dominates the decadal climatic changes that result
from the interplay of the tropical ocean and the atmosphere. Over the past ten years, the
idea of the ENSO phenomenon has grown to a more developed stage. ENSO research has
developed to the point where forecasts are now routinely made. In its investigation of the
empirical relationships between El Nio and the Southern Oscillation, Ref. [4] originally
proposed that ENSO is the outcome of ocean–atmosphere interaction in the tropical Pacific.
He understood that the easterlies across the tropical Pacific are caused by the equatorial
SST zonal gradient. By producing a cold SST over the eastern Pacific, these easterlies, in
turn, enhance the SST gradient. A hot or cold SST anomaly is maintained through the
Bjerknes positive feedback process of tropical ocean–atmosphere interaction. Wyrtki, in [5],
discovered that oceanic anomalies in sea-level data are dynamic and basin-wide during an
El Nio. He proposed that the strengthening of the trade winds is related to the rise in sea
level, which is a measure of the heat content over the western Pacific. The stored warm
water then moves eastward in the form of Kelvin waves to initiate an El Nio event.

La Nia has low air surface pressure and El Nio has high air surface pressure in the
tropical western Pacific. The eastern equatorial Pacific Sea surface temperature u (t) and

Fractal Fract. 2023, 7, 602. https://doi.org/10.3390/fractalfract7080602 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7080602
https://doi.org/10.3390/fractalfract7080602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-5545-6185
https://orcid.org/0000-0001-5844-2985
https://doi.org/10.3390/fractalfract7080602
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7080602?type=check_update&version=1


Fractal Fract. 2023, 7, 602 2 of 16

the thermocline depth anomaly v (t) are provided by the perturbation coefficient in the
dynamics of recounting the oscillating physical mechanism of the ENSO model, as shown
in [6,7] and the following: {

dX
dt = βX + ηY − εX 3,

dY
dt = −θX − γY ,

(1)

where β, η, ε, θ, and −γ are physical constants. System (1) has many physical applications
in ocean engineering and is analyzed from a different of point of view. Studying ENSO
holds great significance for several compelling reasons. First, ENSO is a natural climate
pattern with far-reaching impacts on weather and climate conditions worldwide. This
understanding is invaluable for meteorologists, climatologists, and policymakers as it
allows them to anticipate and prepare for extreme weather events, including droughts,
floods, and hurricanes, often associated with El Niño and La Niña phases.

Moreover, ENSO’s influence extends beyond meteorology, profoundly affecting ecosys-
tems, agriculture, fisheries, and water resources in diverse regions across the globe. By
grasping the intricacies of ENSO and its oscillations, scientists and decision-makers can
develop more effective strategies for managing water resources, planning agricultural prac-
tices, and conserving biodiversity, enhancing overall resilience to environmental changes.

Additionally, the interactions between ENSO and other climate patterns, such as the
Indian Ocean Dipole and the Pacific Decadal Oscillation, underscore the interconnected
nature of global climate systems. This awareness plays a crucial role in refining climate
models and making more accurate long-term climate predictions, essential for adapting to
and mitigating the effects of climate change, ultimately shaping a more sustainable future
for our planet.

Fractional calculus (FC) is a hot research topic nowadays due to its interesting proper-
ties and applications [8–11]. In the literature, several operators have been introduced for the
analysis of mathematical models that occur in various disciplines. Three main operators,
i.e., Caputo, Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) operators, are very popular
and have been frequently used in the investigation of physical phenomena [12–14]. These
operators are dependent on the distinct nature of kernels. Amongst these, the operator
defined via the Mittag–Leffler kernel, which we call the Atangana–Baleanu (AB) operator,
gives better results than the others. The AB operator has many applications in different
fields of applied sciences such as mathematical physics [15–17], biomathematics [18,19],
chaotic systems [20], and many more [21,22].

The relevance of using a fractional operator in the ENSO model lies in its ability to
capture complex and long-range interactions within the system. ENSO is a highly intricate
climate phenomenon influenced by a wide range of factors operating across different spatial
and temporal scales. By employing a fractional operator, the model can effectively account
for nonlocal interactions and memory effects that play a significant role in ENSO dynamics.
This approach allows for a more accurate representation of the system’s behavior, leading
to a better understanding of ENSO’s complexities and improved predictions of its behavior
over time. Using the concept presented in [23], we can change the fractional operator with
an auxiliary parameter Ω, having the dimension of sec. stands for, to make sure that the
dimension is the same on both sides. Therefore, we can express the Equation (1) in the
fractional sense of correct dimensions as follows:{

1
Ω1−µ

ABC
Dµ

t X (t) = βX + ηY − εX 3,
1

Ω1−µ

ABC
Dµ

t Y(t) = −θX − γY ,
(2)

subject to initial values (IV) X (0) = X0 and Y(0) = Y0. In the system (2), ABCDµ
t de-

notes the fractional AB differential operator which is defined below. Let FD denote the
fractional derivative.
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Definition 1 ([24]). For fractional order 0 < µ ≤ 1, and F ∈ H1(c, d), the ABC FD is defined
as follows:

ABCDµ
t F(t) =

M(µ)

(1− µ)

∫ t

0
E
(
−µ

µ− 1
(t− p)µ

)
F
′
(p)dp,

where M(µ) signifies the normalization function, M(0) = M(1) = 1, and Eµ represents
Mittag–Leffler function in one parameter as given below :

Eµ(p) =
∞

∑
r=0

pr

Γ(µr + 1)
.

Let FI represent fractional integral. The corresponding inverse operator of the ABCFD
is defined as follows.

Definition 2 ([24]). For fractional order 0 < µ ≤ 1 and F ∈ L1(a, b), x ABC FI is defined
as follows:

ABCIµ
t F(t) =

(1− µ)

M(µ)
F(t) +

µ

M(µ)Γ(µ)
×
∫ t

0
(t− p)µ−1F

′
(p)dp.

2. Equilibria and Bifurcation

Here, we study the equilibrium points (EPs) and the stability of the considered mode.
For the EPs, we equate the left side of model (2) to zero, so we have

0 = βX + ηY − εX 3

0 = −θX − γ.
(3)

On solving Equation (3), for X and Y , we obtain

E1 = [0, 0],

E2 =

[
−γ

(√
βγ− ηθ

εγ3

)
, θ

(√
βγ− ηθ

εγ3

)]
,

E3 =

[
γ

(√
βγ− ηθ

εγ3

)
,−θ

(√
βγ− ηθ

εγ3

)]
.

(4)

The Jacobian matrix of the considered model is as follows:

J =

[
1− 3X 2

10 1
−4 −1

]
. (5)

Putting the values of parameters in Equation (2), we obtain complex complex equilib-
rium points, which we do not consider. We consider the first equilibrium point E1; therefore,
after putting the first equilibrium point in Equation (5), we obtain the eigen values as
λ1 = −0.002 + i

√
3 and λ1 = −0.002− i

√
3, which shows that the proposed system is a

stable spiral with damped oscillatory behavior.

Bifurcation

Here, we graphically present the bifurcation in the proposed model (2) vs. different
parameters.

Figure 1 conveys the bifurcation in the state variable X of model (2) vs. parameter β.
Figure 2 gives the bifurcation in the state variable X of model (2) vs. parameter η. Figure 3
displays the bifurcation in the state variable X of model (2) vs. parameter θ. In Figure 1,
we observe the period doubling bifurcation. Figures 2 and 3 depict the inverse period
doubling‘bifurcations.
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Figure 1. The bifurcation in X of model (2) vs. β.

Figure 2. The bifurcation in X of model (2) vs. η.

Figure 3. The bifurcation in X of model (2) vs. θ.

3. Some Theoritical Results

The theoretical and qualitative analysis of differential equations under FDs has gained
much interest among scientists. Several approaches have been implemented to study these
theoretical characteristics. In this section, some famous fixed point results are utilized to
demonstrate some qualitative features such as the existence and stability of the solution of
the ENSO model under the AB fractional operator. Let us write the ENSO model under AB
as follows: {

1
Ω1−µ

AB
Dµ

t X = βX + ηY − εX 3,
1

Ω1−µ

AB
Dµ

t Y = −θX − γY .
(6)
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Here, we utilize the Picard–Lindelof approach and fixed-point theory to show that the
ENSO model has a solution. One may write model (6) in an alternative form as follows:{

ABDµ
t X (t) = Ω1−µG1(t,X (t)),

ABDµ
t Y(t) = Ω1−µG2(t,Y(t)),

(7)

where G1 and G2 denote the right hand sides of Equation (6). From here on, consider Υ = Ω1−µ.

Theorem 1. If K1 =
[

β + ε(k2
1 + g1 + g1k1)

]
< 1 and K2 = γ < 1, then the kernels G1 and G2

fulfill the Lipschitz condition.

Proof. Let ‖X ‖ ≤ g1, ‖X1‖ ≤ k1, ‖Y‖ ≤ g2, and ‖Y1‖ ≤ k2 where g1 ≥ 0, g2 ≥ 0, k1 ≥ 0
and k2 ≥ 0. In the start, we demonstrate that the contraction requirement is met by G1. For
this, consider

‖G1(t,X (t))− G1(t,X1(t))‖ = Υ
∥∥∥βX + ηY − εX 3 − βX1 − pY + εX 3

1

∥∥∥
= Υ

∥∥∥β(X −X1) + ε(X 3
1 −X 3)

∥∥∥
= Υ

∥∥∥β(X −X1) + ε(X1 −X )(X 2
1 +X 2 +X1X )

∥∥∥
≤ Υβ‖X −X1‖+ ε‖X1 −X‖

∥∥∥X 2
1 +X 2 +X1X

∥∥∥
≤ Υ

[
β + ε(k2

1 + g1 + g1k1)
]
‖X −X1‖.

Thus, G1 satisfies the contraction condition by taking K1 = Υ
[

β + ε(k2
1 +g1 +g1k1)

]
< 1.

Now, consider the second equation as follows:

‖G2(t,Y(t))− G2(t,Y1(t))‖ = Υ‖−θX − γY + θX + γY1‖
= Υ‖−γ‖
= Υ|−γ|‖(Y − Y1)‖
≤ Υγ‖(Y − Y1)‖.

Thus, G2 satisfies the contraction condition by taking K2 = Υγ < 1.

One way to express the system (7) is as follows:
X (t)−X (0) = ΥG1(t,X )

(1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ t
0 (t− p)µ−1G1(p,X )dp,

Y(t)−Y(0) = ΥG2(t,Y) (1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ t
0 (t− p)µ−1G2(p,Y)dp.

(8)

Here, we obtain the subsequent iterative equations
Xn+1(t) = ΥG1(t,Xn)

(1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ t
0 (t− p)µ−1G1(p,Xn)dp,

Yn+1(t) = ΥG2(t,Yn)
(1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ t
0 (t− p)µ−1G2(p,Yn)dp.

(9)

Now, we achieve the exact solution by taking the limit n→ ∞.

Theorem 2. The considered system posses a unique solution if v =
{

(1−µ)
M(µ)

β1 +
µβbµ

Γ(µ)M(µ)

}
< 1.

Proof. Let W1 = supF[h,d1]
‖G1(t,X )‖, W2 = supF[h,d2]

‖G2(t,Y)‖where{
Fh,d1 = |t− h, t+ h| × [X − d1,X + d1] = B1 ×D1,
Fh,d2 = |t− h, t+ h| × [Y − d2,Y + d2] = B1 ×D2.

(10)
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Define the Picard operator Q : F(D1, D2, B1) −→ F(D1, D2, B1) as follows:

Q<(t) = <0(t) + Υ

[
∆(t,<(t)) (1− µ)

M(µ)
+

µ

Γ(µ)M(µ)

∫ t

0
(t− p)µ−1∆(p,<(p))dp

]
,

where
<(t) = (X ,Y),

<0(t) = (X0,Y0),

and
∆(t,<(t)) = [G1(t,X (t)), G2(t,Y(t))].

Since G1 and G2 satisfies the contraction condition,

‖∆(t,<1(t))− ∆(t,<2(t))‖ ≤ β1‖<1(t)−<2(t)‖.

Additionally, we assume that the solution is bounded, i.e.,‖<(t)‖∞ ≤max{k1, k2, k3, k4, k5}.

‖<(t)−<0(t)‖ = |Υ|
∥∥∥∥∆(t,<(t)) (1− µ)

M(µ)
+

µ

Γ(µ)M(µ)

∫ t

0
(t− p)µ−1∆(p,<(p))dp

∥∥∥∥
≤ |Υ|‖∆(t,<(t))‖ (1− µ)

M(µ)
+

µ

Γ(µ)M(µ)

∫ t

0

∥∥∥(t− p)µ−1∆(p,<(p))
∥∥∥dp

≤ |Υ|
(
(1− µ)

M(µ)
+

µbµ

Γ(µ)M(µ)

)
max{J1, J2}

< bJ ≤ K = max{d1, d2}.

Thus, we need b < k
J . As a consequence, using Banach contraction result, one obtains

‖Q<1 −Q<2‖∞ = sup
t→b
|<1 −<2|.

Now we have

‖Q<1 −Q<2‖ = |Υ|
∥∥∥∥ (1− µ)

M(µ)
[∆(t,<1(t))− ∆(t,<2(t))]

+
µ

Γ(µ)M(µ)

∫ t

0
(t− p)µ−1[∆(p,<1(p))− ∆(p,<2(p))]dp

∥∥∥∥
≤|Υ|‖∆(t,<1(t))− ∆(t,<2(t))‖

(1− µ)

M(µ)

+
µ

Γ(µ)M(µ)

∫ t

0
(t− p)µ−1‖∆(η,<1(p))− ∆(p,<2(p))‖dp

≤Υ
(1− µ)

M(µ)
β1‖<1(t)−<2(t)‖+

µβ1

Γ(µ)M(µ)

∫ t

0
(t− p)µ−1‖<1(p)−<2(p)‖dp

≤Υ

{
(1− µ)

M(µ)
β1 +

µβbµ

Γ(µ)M(µ)

}
‖<1 −<2‖

≤Υvβ1‖<1 −<2‖,

where β1 < 1. Since < fulfills the criteria of contraction, the suggested ENSO model has a
unique solution.

4. Numerical Results

Model (2) ’s approximative solutions are provided in this section. A numerical tech-
nique is developed using the fractional Adams–Bashforth approach to simulate our system.
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The recommended scheme allows for the capture of numerical simulations. To obtain
numerical results, consider {

ABDµ
t X (t) = ΥG1(t,X (t)),

ABDµ
t Y(t) = ΥG2(t,Y(t)),

(11)

where G1(t,X (t)) = βX + ηY − εX 3, and G2(t,Y(t)) = −θX − γY . Using AB integral,
we haveX (t)−X (0) = ΥG1(t,X )

(1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ t
0 (t− p)µ−1G1(p,X )dp,

Y(t)−Y(0) = ΥG2(t,Y) (1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ t
0 (t− p)µ−1G2(p,Y)dp.

(12)

Now, to deduce the numerical results, set t = te+1, for e = 0, 1, 2, 3, · · · , thenX (te+1)−X (0) = ΥG1(te+1,X )
(1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ te+1
0 (te+1 − p)µ−1G1(p,X )dp,

Y(te+1)−Y(0) = ΥG2(te+1,Y) (1−µ)
M(µ)

+ Υ
µ

Γ(µ)M(µ)

∫ te+1
0 (te+1 − p)µ−1G2(p,Y)dp.

(13)

The function is approximated in the [ts, ts+1] via Lagrangian interpolation as

G1(p,X (p)) =
G1(ts,X (ts))

h̄
(t− ts−1) +

G1(ts−1,X (ts−1))

h̄
(t− ts),

G2(p,Y(p)) =
G2(ts,Y(ts))

h̄
(t− ts−1) +

G2(ts−1,Y(ts−1))

h̄
(t− ts).

Sos system (13) obtains the form:

X (te+1)−X (0) = ΥG1(te+1,X (te))
(1−µ)
M(µ)

+ Υµ
Γ(µ)M(µ) ∑s

e=0

[
G1(ts,X (ts))

h̄

∫ ts+1
ts

(t− ts−1)(te+1 − p)µ−1dp

−G1(ts−1,X (ts−1))
h̄

∫ ts+1
ts

(t− ts)(te+1 − p)µ−1dp
]
,

Y(te+1)−Y(0) = ΥG2(te+1,Y(te))
(1−µ)
M(µ)

+ Υµ
Γ(µ)M(µ) ∑s

e=0

[
G2(ts,Y(ts))

h̄

∫ ts+1
ts

(t− ts−1)(te+1 − p)µ−1dp

−G2(ts−1,Y(ts−1))
h̄

∫ ts+1
ts

(t− ts)(te+1 − p)µ−1dp
]
.

(14)

Now,∫ ts+1

ts
(t− ts−1)(te+1 − p)µ−1dp =

−1
µ

[(ts+1 − ts−1)(te+1 − ts+1)
µ − (ts − ts−1)(te+1 − ts)

µ]

− 1
µ(µ + 1)

[
(te+1 − ts+1)

µ+1 − (te+1 − ts)
µ+1
]
.

At ts = sh̄, we obtain∫ ts+1

ts
(t− ts−1)(te+1 − p)µ−1dp =

−h̄µ+1

µ
[(s + 1− s + 1)(e + 1− s− 1)µ

−(s− s + 1)(e + 1− s)µ]

−h̄µ+1

µ(µ + 1)

[
(e + 1− s− 1)µ+1 − (e + 1− s)µ+1

]
=

h̄µ+1

µ(µ + 1)
[(e− s)µ(−2µ− 2− e + s)

+(e + 1− s)µ(µ + 1 + e + 1− s)]

=
h̄µ+1

µ(µ + 1)
[(e− s + 1)µ(e− s + 2 + µ)

−(e− s)µ(2µ + 2 + e− s)].
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Likewise,∫ ts+1

ts
(t− ts)(te+1 − p)µ−1dp =

h̄µ+1

µ(µ + 1)

[
(e− s + 1)µ+1

−(e− s)µ(e− s + 1 + µ)].

So, system (14) becomes

X (te+1) = ΥX (t0) + ΥG1(te,X (te))
(1− µ)

M(µ)

+
Υµ

Γ(µ)M(µ)

s

∑
e=0

{
h̄µG1(ts,X (ts))

Γ(µ + 2)
[(e + 1− s)µ(e− s + 2 + µ)

×(e− s)µ(e− s + 2 + 2µ)]− h̄µG1(ts−1,X (ts−1))

Γ(µ + 2)[
(e + 1− s)µ+1(e− s)µ(e− s + 1 + µ)

]}
.

Similarly,

Y(te+1) = ΥY(t0) + ΥG2(te,Y(te))
(1− µ)

M(µ)

+
Υµ

Γ(µ)M(µ)

s

∑
e=0

{
h̄µG2(ts,Y(ts))

Γ(µ + 2)
[(e + 1− s)µ(e− s + 2 + µ)

×(e− s)µ(e− s + 2 + 2µ)]− h̄µG2(ts−1,Y(ts−1))

Γ(µ + 2)[
(e + 1− s)µ+1(e− s)µ(e− s + 1 + µ)

]}
.

5. Stability Analysis

Here, we exhibit the stability of the solution of the coupled ocean model under
AB operator using the concept of Ulam–Hyres (UH) stability. We present the following
definitions which will be used in the stability solution . Let us write the proposed ENSO
model as {

ABC
0 Dµ

t Q(t) = ΥM(t,Q(t)),
Q(0) = Q0(t) ≥ 0, 0 < t < ∞,

(15)

where

Q(t) =
{
X (t)
Y(t)

, Q0(t) =

{
X0(t)
Y0(t)

,

{
M‘1(t)
M‘2(t)

=

{
M‘1(t,X ,Y)
M‘2(t,X ,Y)

,

M(t,Q(t)) =
{

βX + ηY − εX 3

−θX − γY .
(16)

Next, we apply the integral operator AB
0 Iµ

t in the ABC sense on (15)

Q(t) = Q0(t) + Υ
1− µ

M(µ)
M(t,Q(t)) + Υµ

M(µ)Γ(µ)

∫ t

0
(t− σ)µ−1M(σ,Q(σ))dσ. (17)

Next, we define operator Z : B→ B by

Z[Q(t)] = Q0(t) + Υ
1− µ

M(µ)
M(t,Q(t)) + Υµ

M(µ)Γ(µ)

∫ t

0
(t− σ)µ−1M(σ,Q(σ))dσ. (18)
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Definition 3 ([25]). The AO model (2) is U−H stable if ∃ CF > 0, such that for each $ > 0 and
for each solution Y ∈ B of∣∣∣ABC

0 Dµ
t Y(t)−M(t,Y(t))

∣∣∣ ≤ $, ∀ t ∈ [0, T], (19)

there is solution Q ∈ B of model (2), under

|Y(t)−Q(t)| ≤ CF$, ∀ t ∈ [0, T], (20)

with $ = max($i)
T and CF = max(CF i)

T for i=1,2.

Definition 4 ([25]). The solution of AB ENSO model (2) is G − U − H stable if
∃ PF ∈ C(R+,R+) with PF(0) = 0 for each solution Y ∈ B which satisfies∣∣∣ABC

0 Dµ
t Y(t)−M(t,Y(t))

∣∣∣ ≤ $PF(t), ∀ t ∈ [0, T], (21)

|Y(t)−Q(t)| ≤ PF$, ∀ t ∈ [0, T], (22)

with $ = max($i)
T, and PF = max(PF i)

T, for i = 1, 2.

Definition 5 ([25]). Model (2) is HUR stable with respect to PF ∈ C([0, T],R+) if ∃ CF ,PF > 0;
thus, ∀ $ > 0, and for each solution Y ∈ B of (21), there exists solution T ∈ B of the ENSO
system (2); hence,

|Y(t)−Q(t)| ≤ CF ,PF εPF (t), t ∈ [0, T], (23)

with $ = max($i)
T, CF ,PF = max(CF i,PF i )

T, and PF = max(PF i)
T for i = 1, 2.

Definition 6 ([25]). The ENSO system (2) is GHUR stable with respect to PF ∈ C([0, T],R+)
if ∃ CF ,PF > 0; thus, for each solution Y ∈ B of

|Y(t)−Q(t)| ≤ PF (t), ∀ t ∈ [0, T], (24)

we have Q ∈ B, so

|Q(t)−Y(t) ≤ CF ,PFPF (t), t ∈ [0, T], (25)

with CF ,PF = max(CF i,PF i )
T and PF = max(PF i)

T for i = 1, 2.

Remark 1. Y ∈ B satisfies (19) ⇐⇒ there is V ∈ B (depending on Y), so

1. |V(t)| ≤ $, V = max(Vi)
T, forall t ∈ [0, T];

2. ABC
0 Dµ

t Y(t) = ΥM(t,Y(t)) + V(t), forall t ∈ [0, T].

Remark 2. Y ∈ B is the solution of (21) ⇐⇒ there is U ∈ B (depending on Y), so

1. |U (t)| ≤ $PF(t), U = max(Ui)
T, forall t ∈ [0, T];

2. ABC
0 Dµ

t Y(t) = ΥM(t,Y(t)) + U (t), forall t ∈ [0, T].

Remark 3. Consider an increasing mapping PF ∈ C([0, T],R+) and let vPF > 0, so ∀ t ∈ [0, T].
Here, we obtain

ABC
0 Iµ

t PF(t) ≤ vPF(t). (26)

UH Stability

Here, we ellaborate the important result which factor into the UH and GUH stability
of the proposed model (2).
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Lemma 1. Suppose that φ ∈ (0, 1] and Y ∈ B is the solution of (19). Then, Q ∈ Q satisfies
the following:

|Y(t)− ZY(t)| ≤ Υ

M(µ)

[
1− µ +

Tµ

Γ(µ)

]
. (27)

Proof. Consider that Y is the solution of (19). Then, we have{
ABC
0 Dµ

t Y(t) = ΥM(t,Y(t)) + V(t), t ∈ [0, T]
Y(0) = Y0 ≥ 0

. (28)

The solution of the above equation can expressed as

Y(t) = Y0(t) + Υ
1− µ

M(µ)
M(t,Y(t)) + Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1M(p,Y(p))dp

+Υ
1− µ

M(µ)
V(t) + Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1V(p)dp. (29)

Using Remark 3, we obtain

|Y(t)− Z[Q(t)]| ≤ Υ
1− µ

M(µ)
|V(t)|+ Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1|V(p)|dp

≤ Υ

M(µ)

[
1− µ +

Tµ

Γ(µ)

]
. (30)

Hence, we obtained the inequality (27).

Next, we demonstrate the UH and GUH stability of the solutions to the proposed
model (2).

Theorem 3. Suppose that F ∈ C([0, T])×R4,R and satisfies the Lipchitz condition. Then, model (2)
is UH stable on [0, T].

Proof. Consider that Y ∈ B is any solution of (19) and Q ∈ B is a unique solution of
model (2). Using triangle inequality with Lemma (1), we obtain

|Y(t)−Q(t)| ≤
∣∣∣∣Y(t)−Q0(t)Υ

1− µ

M(µ)
Q(t)− Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1Q(p)dp

∣∣∣∣
≤ |Y(t)− Z[Y(t)] + Z[Y(t)]− Z[Q(t)]|

≤ |Y(t)− Z[Y(t)]|+ |Z[Y(t)]− Z[Q(t)]|

≤ Υ

M(µ)

[
1− µ +

Tµ

Γ(µ)
$+

]
+

ΥLF
M(µ)

[
1− µ +

Tµ

Γ(µ)
$+

]
|Y(t)−Q(t)|,

(31)

which shows that |Y(t)−Q(t)| ≤ CF$, where

CF =

Υ
M(µ)

[
1− µ + Tµ

Γ(µ)$+
]

1− ΥLF
M(µ)

[
1− µ + Tµ

Γ(µ)$+
]
.

So, the suggested model (2) is UH stable.

Corollary 1. Considering PF = CF$ in the above theorem with PF(0) = 0, model (2) is GUH stable.

Lemma 2. Suppose that φ ∈ (0, 1] and Y ∈ B is the solution of (21). Then, Y satisfies the following:

|Y(t)− ZY(t)| ≤ vPFPF(t)$. (32)
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Proof. Consider that Y is the solution of (21). Then, one reaches:{
ABC
0 Dµ

t Y(t) = ΥM(t,Y(t)) + U (t), t ∈ [0, T]
Y(0) = Y0 ≥ 0

. (33)

The solution of the above equation can expressed as

Y(t) = Y0(t) + Υ
1− µ

M(µ)
M(t,Y(t)) + Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1M(p,Y(p))dp

+
1− µ

M(µ)
U (t) + Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1U (p)dp. (34)

Using Remark 4, we obtain

|Y(t)− Z[Q(t)]| ≤ Υ
1− µ

M(µ)
|U (t)|+ Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1|U (p)|dp

≤ vPFPF(t)$. (35)

Hence, we obtained the inequality (33).

Next, we prove that the suggested model (2) is RUH and GRUH stable.

Theorem 4. Suppose that F ∈ C([0, T])× R4,R and satisfies the Lipchitz condition LF. Then,
model (2) is RUH stable on [0, T]

Proof. Consider that Y ∈ B is any solution of (24) and Q ∈ B is a unique solution of
model (2). Using triangle inequality with Lemma (2), we obtain

|Y(t)−Q(t)| ≤
∣∣∣∣Y(t)−Q0(t)Υ

1− µ

M(Υµ)
M(t,Q(t))− Υµ

M(µ)Γ(µ)

∫ t

0
(t− p)µ−1×

M(p,Q(p))dp| ≤ |Y(t)− Z[Y(t)] + Z[Y(t)]− Z[Q(t)]|

≤ |Y(t)− Z[Y(t)]|+ |Z[Y(t)]− Z[Q(t)]|

≤ vPFPF(t)$ +
ΥLF
M(µ)

[
1− µ +

Tµ

Γ(µ)
$+

]
|Y(t)−Q(t)|,

(36)

which shows that |Y(t)−Q(t)| ≤ CF ,PFPF$, where

CF ,PFPF =
vPFPF

1− ΥLF
M(µ)

[
1− µ + Tµ

Γ(µ)$+
] .

So, the suggested model (2) is RUH stable.

Corollary 2. Considering $ = 1 into |Y(t) − Q(t)| ≤ CF ,PFPF in the above theorem with
PF(0) = 0, model (2) is GRUH stable.

6. Numerical Simulations

Here, we numerically simulate the approximate results using various values of param-
eters and fractional orders. For the simulations of the outcomes, the initial conditions are
considered as [X0,Y0] = [1, 1].

In Figure 4, the parameters values are considered as β = 1, η = 1, ε = 0.2,
θ = 4 , and γ = 1. The fractional order is considered as (blue, 1.00) , (green, 0.99),
(red, 0.98), and (magenta, 0.96). Figure 4a shows the 2D dynamics of the sea surface tem-
perature X (t) and thermocline depth anomaly Y(t). Figure 4b depicts the 3D behavior of
the state variables X (t) and Y(t) vs. time t. Further, Figure 4c,d visualizes the evolution of
the waves in the state variables X (t) and Y(t) vs. t, respectively. In Figure 4, the damping
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behavior can be observed; further, it is observed that the fractional order operators decrease
the wave amplitude, which shows the existence of a fixed point attractor that attracts all
the nearby trajectories towards it.
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Figure 4. The dynamics of model (2) with various fractional orders.

In Figure 5, different values of parameter η are considered as (black, 1.00), (green, 0.7),
(red, 0.5), and (dashed blue, 0.3). The fractional order is considered as 0.98. Decreasing the
value of parameter η reduces the number of oscillations in the proposed system. Figure 5a
shows the 2D dynamics of the sea surface temperatureX (t) and thermocline depth anomaly
Y(t). Figure 5b,c visualize the evolution of the waves in the state variables X (t) Y(t) vs. t,
respectively.

In Figure 6, different values of parameter ε are considered as (black, 1.00), (green, 0.7),
(red, 0.5), and (dashed blue, 0.3). The fractional order is considered as 0.98. From Figure 6,
we see that the decrease in the value of ε increases the amplitude of the oscillations.
Figure 6a shows the 2D dynamics of the sea surface temperature X (t) and thermocline
depth anomaly Y(t). Figure 6b,c visualize the evolution of the waves in the state variables
X (t) Y(t) vs. t, respectively.

In Figure 7, different values of parameter θ are considered as (black, 4), (green, 3),
(red, 2), and (dashed blue, 1). Here, the fractional order is considered as 0.98. Figure 7a
displays the 2D dynamics of X vs. Y with t = 200. Figure 7b demonstrates the behavior of
sea surface temperature vs. time t, along with thermocline depth anomaly vs. time t. The
increase in the parameter θ decreases the oscillations. Figure 7c visualize the evolution of
the waves in the state variable Y(t) vs. t.

In Figure 8, different values of parameter γ are considered as (black, 1.00), (green, 0.9),
(red, 0.8), and (dashed blue, 0.7). For this figure, the fractional order is considered as 0.98.
From the varying γ, one can observe that decreasing γ increases the number as well as
amplitudes of the waves with the passage of time. Figure 8a shows the 2D dynamics of the
sea surface temperature X (t) and thermocline depth anomaly Y(t). Figure 8b,c visualize
the evolution of the waves in the state variables X (t) Y(t) vs. t, respectively.
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Figure 5. The dynamics of model (2) with different values of η.
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Figure 6. The affects of different values of parameter ε on the dynamics of model (2).
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Figure 7. The affects of different values of parameter θ on the dynamics of model (2).
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Figure 8. The affects of different values of parameter γ on the dynamics of model (2).

7. Conclusions

Young researchers have always been drawn to the study of the complicated nature of
realistic models in order to share their ideas and highlight the innovative characteristics
of the relevant system. In this article, we have used a coupled system, the ENSO model
with a Mittag–Leffler fractional derivative, to represent the atmospheric ocean. We have
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exhibited results indicating the existence of, at most, one solution to the considered model
by applying the Picard–Lindelof theory and the Banach contraction theorem. We have
analyzed the equilibrium points and have presented their stability. We have depicted
the different natures of bifurcation maps with respect to various parameters. We have
used the two-step Adams–Bashforth method and Lagrangian interpolation polynomial
to procure numerical results for the projected ENSO model. In parametric graphs, the
ENSO model under consideration’s complexity has been depicted for various fractional
orders. The figures illustrate the behavior of several parameters related to the coupled
system after analysis. Additionally, the employed system has a significant impact on how
water and weather affect living things on a regular basis. Therefore, the current study helps
researchers to learn more about the model and makes room for innovation.
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