Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions
Abstract
:1. Introduction
Motivation
2. Preliminaries
- If , then we say that is degenerate.
- If , then is said to be a positive interval. All positive intervals are denoted by and defined as:
3. Hermite–Hadamard (H-H) Integral Inequalities via Convex FIVF
4. Applications of Trapezoid Type Inequalities via Pre-Invex Fuzzy Interval Valued Function (FIV)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equations 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Purohit, D.S. A mathematical fractional model with nonsingular kernel for thrombin receptor activation in calcium signalling. Math. Methods Appl. Sci. 2019, 42, 7160–7171. [Google Scholar] [CrossRef]
- Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S. Existence and Uniqueness of Miscible Flow Equation through Porous Media with a Non Singular Fractional Derivative. AIMS Math. 2020, 5, 1062–1073. [Google Scholar] [CrossRef]
- Khan, M.A.; Begum, S.; Khurshid, Y.; Chu, M.Y. Ostrowski type inequalities involving conformable fractional integrals. J. Inequalities Appl. 2018, 2018, 1–14. [Google Scholar]
- Khan, M.A.; Chu, M.Y.; Kashuri, A.; Liko, R.; Ali, G. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, 2018, 6928130. [Google Scholar]
- Mohammed, O.P.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Mohammed, O.P.; Aydi, H.; Kashuri, A.; Hamed, S.Y.; Abualnaja, M.K. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Fejér, L. Uber die fourierreihen, II. Math. Naturwiss. Anz. Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
- Mehmood, S.; Zafar, F.; Asmin, N. New Hermite-Hadamard-Fejér type inequalities for (η1,η2)-convex functions via fractional calculus. Sci. Asia 2020, 46, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Aslani, S.M.; Delavar, M.R.; Vaezpour, S.M. Inequalities of Fejér Type Related to Generalized Convex Functions. Int. J. Anal. Appl. 2018, 6, 38–49. [Google Scholar]
- Delavar, M.R.; Aslani, S.M.; Sen, M.D.L. Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals. J. Math. 2018, 2018, 5864091. [Google Scholar]
- Gordji, M.E.; Delavar, M.R.; Sen, M.D.L. On Φ-convex functions. J. Math. Inequal. 2016, 10, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.R.; Kearfott, R.B.; Michael, J.C. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef] [Green Version]
- Costa, T. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Costa, T.M.; Romn-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Romn-Flores, H.; Chalco-Cano, Y.; Lodwick, W. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Romn-Flores, H.; Chalco-Cano, Y.; Silva, G.N. A note on Gronwall type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 1455–1458. [Google Scholar]
- Chalco-Cano, Y.; Flores-Franulic, A.; Romn-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Agarwal, P.A.; Baleanu, D.; Nieto, J.J.; Torres, F.D.; Zhou, Y. A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 2018, 339, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Diamond, P.; Kloeden, P. Metric spaces of fuzzy sets. Fuzzy Sets Syst. 1990, 35, 241–249. [Google Scholar] [CrossRef]
- Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, B.M.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite-Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization; Universitatea Cluj-Napoca: Cluj Napoca, Romania, 1984; pp. 329–338. [Google Scholar]
- Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Qiang, X.; Farid, G.; Yussouf, M.; Khan, K.A.; Rahman, A.U. New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions. J. Inequalities Appl. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Ion, D.A. Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2007, 34, 82–87. [Google Scholar]
- Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Kaleva, O. Fuzzy Differential Equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation. Math. Methods Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Chelsea Publ. Co.: Bronx, NY, USA, 1971. [Google Scholar]
- Petojevic, A. A note about the Pochhammer symbol. Math. Moravica 2008, 12, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, S.; Ali, S.R.S.; Nayab, I.; Rahman, G.; Abdeljawad, T.; Nisar, K.S. Integral transforms of an extended generalized multi-index Bessel function. AIMS Math. 2020, 5, 7531–7547. [Google Scholar] [CrossRef]
- Ali, R.S.; Mubeen, S.; Nayab, I.; Araci, S.; Rahman, G.; Nisar, K.S. Some Fractional Operators with the Generalized Bessel-Maitland Fuction. Discret. Dyn. Nat. Soc. 2020, 2020, 1378457. [Google Scholar]
- Ali, S.; Mubeen, S.; Ali, R.S.; Rahman, G.; Morsy, A.; Nisar, K.S.; Purohit, S.D.; Zakarya, M. Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Math. 2021, 6, 9705–9730. [Google Scholar] [CrossRef]
- Ali, R.S.; Mubeen, S.; Ali, S.; Rahman, G.; Younis, J.; Ali, A. Generalized Hermite–Hadamard-Type Integral Inequalities for-Godunova–Levin Functions. J. Funct. Spaces 2022, 2022, 9113745. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Ali, R.S.; Saif, H.; Jeelani, M.B.; Rahman, G.; Elmasry, Y. Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions. Fractal Fract. 2023, 7, 580. https://doi.org/10.3390/fractalfract7080580
Vivas-Cortez M, Ali RS, Saif H, Jeelani MB, Rahman G, Elmasry Y. Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions. Fractal and Fractional. 2023; 7(8):580. https://doi.org/10.3390/fractalfract7080580
Chicago/Turabian StyleVivas-Cortez, Miguel, Rana Safdar Ali, Humira Saif, Mdi Begum Jeelani, Gauhar Rahman, and Yasser Elmasry. 2023. "Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions" Fractal and Fractional 7, no. 8: 580. https://doi.org/10.3390/fractalfract7080580
APA StyleVivas-Cortez, M., Ali, R. S., Saif, H., Jeelani, M. B., Rahman, G., & Elmasry, Y. (2023). Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions. Fractal and Fractional, 7(8), 580. https://doi.org/10.3390/fractalfract7080580