Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag–Leffler Function
Abstract
:1. Introduction
- when , and so we obtain the definition presented in [34];
- if and , we obtain the tempered fractional integrals [36];
2. Fractional Integration by Parts
3. Fractional Calculus of Variations
The Fundamental Problem
4. Some Generalizations
4.1. Isoperimetric Problems
- is fixed;
- the set of admissible functions must verify the relation
- is fixed;
- The set of admissible functions must verify the relation
4.2. Holonomic Constraint
- is fixed;
- The set of admissible functions must verify the relation
4.3. Infinite Horizon Problem
- exists for all ;
- exists uniformly for all ;
- for all and , there exists a sequence such that uniformly for all .
4.4. The Herglotz Problem
5. Conclusions and Future Work
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, O.P. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Sadat Sajjadi, S.; Jajarmi, A.; Asad, J.H. New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus 2019, 134, 181. [Google Scholar] [CrossRef]
- Baleanu, D.; Ullah, M.Z.; Mallawi, F.; Saleh Alshomrani, A. A new generalization of the fractional Euler–Lagrange equation for a vertical mass-spring-damper. J. Vib. Control 2021, 27, 2513–2522. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 2011, 14, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Odzijewicz, T.; Torres, D.F.M. The Generalized Fractional Calculus of Variations. Southeast Asian Bull. Math. 2014, 38, 93–117. [Google Scholar]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.T.; Bates, J.H.T. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Singh, J.; Kumar, D.; Baleanu, D. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag–Leffler type kernel. Chaos 2017, 27, 103113. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some Applications of Fractional Calculus in Engineering. Math. Probl. Eng. 2020, 2010, 639801. [Google Scholar]
- Saif, A.; Fareh, R.; Sinan, S.; Bettayeb, M. Fractional synergetic tracking control for robot manipulator. J. Control Decis. 2022, in press. [CrossRef]
- Traore, A.; Sene, N. Model of economic growth in the context of fractional derivative. Alex. Eng. J. 2020, 59, 4843–4850. [Google Scholar] [CrossRef]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Atman, K.G. and Sirin, H. Nonlocal Phenomena in Quantum Mechanics with Fractional Calculus. Rep. Math. Phys. 2020, 86, 263–270. [Google Scholar] [CrossRef]
- Laskin, N. Nonlocal quantum mechanics: Fractional calculus approach. In Volume 5 Applications in Physics, Part B; Tarasov, V.E., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 207–236. [Google Scholar]
- Calcagni, G. Classical and quantum gravity with fractional operators. Class. Quantum Grav. 2021, 38, 165005. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal classical theory of gravity: Massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus 2022, 137, 1336. [Google Scholar] [CrossRef]
- Nadal, E.; Abisset-Chavanne, E.; Cueto, E.; Chinesta, F. On the physical interpretation of fractional diffusion. Comptes Rendus MÉCanique 2018, 346, 581–589. [Google Scholar] [CrossRef]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef]
- Bergounioux, M.; Bourdin, L. Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM Control Optim. Calc. Var. 2020, 26, 35. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B.; Torres, D.F.M. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 2010, 59, 3110–3116. [Google Scholar] [CrossRef] [Green Version]
- Muslih, S.I.; Baleanu, D. Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 2005, 304, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 2012, 75, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Pooseh, S.; Torres, D.F.M. Computational Methods in the Fractional Calculus of Variations; World Scientific Publishing Company: London, UK, 2015. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press: London, UK, 2012. [Google Scholar]
- Malinowska, A.B.; Odzijewicz, T.; Torres, D.F.M. Advanced methods in the fractional calculus of variations. In Springer Briefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2015. [Google Scholar]
- El hadj Moussa, Y.; Boudaoui, A.; Ullah, S.; Muzammil, K.; Riaz, M.B. Application of fractional optimal control theory for the mitigating of novel coronavirus in Algeria. Results Phys. 2022, 39, 105651. [Google Scholar] [CrossRef] [PubMed]
- Trigeassou, J.C.; Maamri, N. Optimal state control of fractional order differential systems: The infinite state approach. Fractal Fract. 2021, 5, 29. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012. [Google Scholar]
- Zine, H.; Torres, D.F.M. A stochastic fractional calculus with applications to variational principles. Fractal Fract. 2020, 4, 38. [Google Scholar] [CrossRef]
- Raubitzek, S.; Mallinger, K.; Neubauer, T. Combining fractional derivatives and machine learning: A review. Entropy 2023, 25, 35. [Google Scholar] [CrossRef]
- Walasek, R.; Gajda, J. Fractional differentiation and its use in machine learning. Int. J. Adv. Eng. Sci. Appl. Math. 2021, 13, 270–277. [Google Scholar] [CrossRef]
- Kishor, D.K.; Ashwini, D.M.; Fernandez, A.; Fahad, H.M. On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations. Chaos Solitons Fract. 2022, 163, 112547. [Google Scholar]
- Mali, A.D.; Kucche, K.D.; Fernandez, A.; Fahad, H.M. On tempered fractional calculus with respect to functions and the associated fractional differential equations. Math. Meth. Appl. Sci. 2022, 45, 11134–11157. [Google Scholar] [CrossRef]
- Medved, M.; Brestovanskaá, E. Differential equations with tempered Ψ-Caputo fractional derivative. Math. Model. Anal. 2021, 26, 631–650. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sabzikar, F.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; translated from the 1987 Russian original; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Rabei, E.M.; Nawafleh, K.I.; Hijjawi, R.S.S.; Muslih, I.; Baleanu, D. The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 2007, 327, 891–897. [Google Scholar] [CrossRef]
- Brock, W.A. On existence of weakly maximal programmes in a multi-sector economy. Rev. Econ. Stud. 1970, 37, 275–280. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B. Generalized transversality conditions in fractional calculus of variations. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Herglotz, G. Gesammelte Schriften; Vandenhoeck & Ruprecht: Göttingen, Germany, 1979. [Google Scholar]
- Zhang, Y. Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem. Symmetry 2020, 12, 845. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X. Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem. Phys. Lett. A 2019, 383, 691–696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R. Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag–Leffler Function. Fractal Fract. 2023, 7, 477. https://doi.org/10.3390/fractalfract7060477
Almeida R. Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag–Leffler Function. Fractal and Fractional. 2023; 7(6):477. https://doi.org/10.3390/fractalfract7060477
Chicago/Turabian StyleAlmeida, Ricardo. 2023. "Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag–Leffler Function" Fractal and Fractional 7, no. 6: 477. https://doi.org/10.3390/fractalfract7060477
APA StyleAlmeida, R. (2023). Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag–Leffler Function. Fractal and Fractional, 7(6), 477. https://doi.org/10.3390/fractalfract7060477