Topological Subordination in Quantum Mechanics
Abstract
:1. Introduction
2. Subordinated Comb Diffusion
3. Subordinated Quantum Mechanics
Discussion of the Preliminary Results
4. Generalised Comb Model
4.1. Memory Kernels with
4.1.1. Comb Wave Equation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Probability density function | |
MSD | Mean squared displacement |
FFPE | Fractional Fokker–Planck equation |
FSE | Fractional Schrödinger equation |
Appendix A. A Brief Survey on Fractional Integration
Appendix B. Fractional Fokker–Planck Equation
Solution in the Form of the Fox H-Function
Appendix C. Eigenfunctions of the Dilatation Operator
References
- Berry, M.V.; Keating, J.P. H=xp and the Riemann zeros. In Supersymmetry and Trace Formulae; Springer: Berlin/Heidelberg, Germany, 1999; pp. 355–367. [Google Scholar]
- Berry, M.V.; Keating, J.P. The Riemann Zeros and Eigenvalue Asymptotics. SIAM Rev. 1999, 41, 236–266. [Google Scholar] [CrossRef]
- Connes, A. Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Sel. Math. 1999, 5, 29–106. [Google Scholar] [CrossRef]
- Sierra, G. H = xp with interaction and the Riemann zeros. Nucl. Phys. B 2007, 776, 327–364. [Google Scholar] [CrossRef]
- Coleman, S. Dilatations. In Properties of Fundamental Interactions; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- de Alfaro, V.; Fubini, S.; Furlan, G. Conformal invariance in quantum mechanics. Nuovo Cim. A 1976, 34, 569–612. [Google Scholar] [CrossRef]
- Jackiw, R. MAB Beg Memorial Volume. Divers. Top. Theor. Math. Phys. 1991, 35, 312. [Google Scholar]
- Twamley, J.; Milburn, G.J. The quantum Mellin transform. New J. Phys. 2006, 8, 328. [Google Scholar] [CrossRef]
- Armitage, J. The Riemann hypothesis and the Hamiltonian of a quantum mechanical system. In Number Theory and Dynamical Systems; Dodson, M.M., Vickers, J.A.G., Eds.; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1989; Volume 134, pp. 153–172. [Google Scholar]
- Bhaduri, R.; Khare, A.; Law, J. Phase of the Riemann ζ function and the inverted harmonic oscillator. Phys. Rev. E 1995, 52, 486. [Google Scholar] [CrossRef]
- Nonnenmacher, S.; Voros, A. Eigenstate structures around a hyperbolic point. J. Phys. A Math. Gen. 1997, 30, 295. [Google Scholar] [CrossRef]
- Berman, G.; Vishik, M. Long time evolution of quantum averages near stationary points. Phys. Lett. A 2003, 319, 352–359. [Google Scholar] [CrossRef]
- Iomin, A. Exponential spreading and singular behavior of quantum dynamics near hyperbolic points. Phys. Rev. E 2013, 87, 054901. [Google Scholar] [CrossRef]
- Iomin, A. Quantum dynamics and relaxation in comb turbulent diffusion. Chaos Solitons Fractals 2020, 139, 110305. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1971; Volume 1. [Google Scholar]
- Bochner, S. Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 1949, 35, 368–370. [Google Scholar] [CrossRef]
- Nelson, E. A Functional Calculus Using Singular Laplace Integrals. Trans. Am. Math. Soc. 1958, 88, 400–413. [Google Scholar] [CrossRef]
- Ziman, T.A.L. Excitations of dilute magnets near the percolation threshold. J. Phys. C Solid State Phys. 1979, 12, 2645–2658. [Google Scholar] [CrossRef]
- White, S.R.; Barma, M. Field-induced drift and trapping in percolation networks. J. Phys. A Math. Gen. 1984, 17, 2995–3008. [Google Scholar] [CrossRef]
- Weiss, G.H.; Havlin, S. Some properties of a random walk on a comb structure. Phys. A 1986, 134, 474–482. [Google Scholar] [CrossRef]
- Arkhincheev, V.E.; Baskin, E.M. Anomalous diffusion and drift in the comb model of percolation clusters. Sov. Phys. JETP 1991, 73, 161–165. [Google Scholar]
- Iomin, A. Subdiffusion on a fractal comb. Phys. Rev. E 2011, 83, 052106. [Google Scholar] [CrossRef]
- Méndez, V.; Iomin, A.; Horsthemke, W.; Campos, D. Langevin dynamics for ramified structures. J. Stat. Mech. Theory Exp. 2017, 2017, 063205. [Google Scholar] [CrossRef]
- Sandev, T.; Iomin, A.; Kantz, H.; Metzler, R.; Chechkin, A. Comb Model with Slow and Ultraslow Diffusion. Math. Model. Nat. Phenom. 2016, 11, 18–33. [Google Scholar] [CrossRef]
- Baskin, E.; Iomin, A. Superdiffusion on a Comb Structure. Phys. Rev. Lett. 2004, 93, 120603. [Google Scholar] [CrossRef] [PubMed]
- Iomin, A. Superdiffusive comb: Application to experimental observation of anomalous diffusion in one dimension. Phys. Rev. E 2012, 86, 032101. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.V.; Tateishi, A.A.; Alves, L.G.A.; Zola, R.S.; Lenzi, E.K. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure. New J. Phys. 2014, 16, 093050. [Google Scholar] [CrossRef]
- Iomin, A.; Méndez, V.; Horsthemke, W. Fractional Dynamics in Comb-Like Structures; World Scientific: Singapore, 2018. [Google Scholar]
- Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043–9052. [Google Scholar] [CrossRef]
- Forte, G.; Burioni, R.; Cecconi, F.; Vulpiani, A. Anomalous diffusion and response in branched systems: A simple analysis. J. Phys. Condens. Matter 2013, 25, 465106. [Google Scholar] [CrossRef]
- Dzhanoev, A.; Sokolov, I. The effect of the junction model on the anomalous diffusion in the 3D comb structure. Chaos Solitons Fractals 2018, 106, 330–336. [Google Scholar] [CrossRef]
- Cecconi, F.; Costantini, G.; Taloni, A.; Vulpiani, A. Probability distribution functions of sub- and superdiffusive systems. Phys. Rev. Res. 2022, 4, 023192. [Google Scholar] [CrossRef]
- Sandev, T.; Iomin, A. Special Functions of Fractional Calculus; World Scientific: Singapore, 2022. [Google Scholar]
- Frauenrath, H. Dendronized polymers—Building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. 2005, 30, 325–384. [Google Scholar] [CrossRef]
- Marsh, R.E.; Riauka, T.A.; McQuarrie, S.A. A review of basic principles of fractals and their application to pharmacokinetics. Q. J. Nucl. Med. Mol. Imaging 2008, 52, 278–288. [Google Scholar]
- Santamaria, F.; Wils, S.; De Schutter, E.; Augustine, G.J. Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines. Neuron 2006, 52, 635–648. [Google Scholar] [CrossRef]
- Santamaria, F.; Wils, S.; De Schutter, E.; Augustine, G.J. The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 2011, 34, 561–568. [Google Scholar] [CrossRef]
- Arkhincheev, V.E.; Kunnen, E.; Baklanov, M.R. Active species in porous media: Random walk and capture in traps. Microelectron. Eng. 2011, 88, 694–696. [Google Scholar] [CrossRef]
- Maex, K.; Baklanov, M.R.; Shamiryan, D.; Iacopi, F.; Brongersma, S.H.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841. [Google Scholar] [CrossRef]
- Sibatov, R.T.; Morozova, E.V. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors. J. Exp. Theor. Phys. 2015, 120, 860–870. [Google Scholar] [CrossRef]
- Singh, R.K.; Sandev, T.; Iomin, A.; Metzler, R. Backbone diffusion and first-passage dynamics in a comb structure with confining branches under stochastic resetting. J. Phys. A Math. Theor. 2021, 54, 404006. [Google Scholar] [CrossRef]
- Evans, M.R.; Majumdar, S.N. Diffusion with Stochastic Resetting. Phys. Rev. Lett. 2011, 106, 160601. [Google Scholar] [CrossRef]
- Bray, A.J.; Majumdar, S.N.; Schehr, G. Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 2013, 62, 225–361. [Google Scholar] [CrossRef]
- Sandev, T.; Iomin, A.; Kocarev, L. Hitting times in turbulent diffusion due to multiplicative noise. Phys. Rev. E 2020, 102, 042109. [Google Scholar] [CrossRef]
- Matheron, G.; De Marsily, G. Is transport in porous media always diffusive? A counterexample. Water Resour. Res. 1980, 16, 901–917. [Google Scholar] [CrossRef]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions [Volumes I–III]; McGraw-Hill: New York, NY, USA, 1953–1955. [Google Scholar]
- Iomin, A. Fractional-time quantum dynamics. Phys. Rev. E 2009, 80, 022103. [Google Scholar] [CrossRef]
- Bender, C.; Bormann, M.; Butko, Y. Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations. Fract. Calc. Appl. Anal. 2022, 25, 1818–1836. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: London, UK, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- de Oliveira, E.C. Solved Exercises in Fractional Calculus; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-function: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Course of Theoretical Physics; Pergamon: Oxford, UK, 1977; Volume 3. [Google Scholar]
- Fock, V.A. Foundations of Quantum Mechanics; Nauka: Moscow, Russia, 1976. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iomin, A.; Metzler, R.; Sandev, T. Topological Subordination in Quantum Mechanics. Fractal Fract. 2023, 7, 431. https://doi.org/10.3390/fractalfract7060431
Iomin A, Metzler R, Sandev T. Topological Subordination in Quantum Mechanics. Fractal and Fractional. 2023; 7(6):431. https://doi.org/10.3390/fractalfract7060431
Chicago/Turabian StyleIomin, Alexander, Ralf Metzler, and Trifce Sandev. 2023. "Topological Subordination in Quantum Mechanics" Fractal and Fractional 7, no. 6: 431. https://doi.org/10.3390/fractalfract7060431
APA StyleIomin, A., Metzler, R., & Sandev, T. (2023). Topological Subordination in Quantum Mechanics. Fractal and Fractional, 7(6), 431. https://doi.org/10.3390/fractalfract7060431