New View on Nonlinear Picture Fuzzy Integral Equations
Abstract
:1. Introduction
2. Preliminaries
3. Parametric Form of NVPFIE
4. Accelerated Solution of ADM for Solving the NVPFIE
5. Convergence Analysis
5.1. Existence and Uniqueness Theorem
5.2. Convergence Analysis
5.3. Error Estimate ([28,29,30])
6. Numerical Cases
7. Simulation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allahviranloo, T.; Salahshour, S.; Homayoun-Nejad, M.; Baleanu, D. General solutions of fully fuzzy linear systems. Abstr. Appl. Anal. 2013, 2013, 593274. [Google Scholar] [CrossRef]
- Columbu, A.; Frassu, S.; Viglialoro, G. Refined criteria toward boundedness in an attraction–repulsion chemotaxis system with nonlinear productions. Appl. Anal. 2023, 1–17. [Google Scholar] [CrossRef]
- Li, T.; Frassu, S.; Viglialoro, G. Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 2022. [Google Scholar] [CrossRef]
- Chang, S.L.; Zadeh, L.A. On fuzzy mapping and control. IEEE Trans. Syst. Man Cybernetics 1972, 2, 30–34. [Google Scholar] [CrossRef]
- Zadeh, L.A. Linguistic variables, approximate reasoning and dispositions. Med. Inform. 1983, 8, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Goetschel, J.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Nanda, S. On integration of fuzzy mappings. Fuzzy Sets Syst. 1989, 32, 95–101. [Google Scholar] [CrossRef]
- Friedman, M.; Ma, M.; Kandel, A. Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets Syst. 1999, 106, 35–48. [Google Scholar] [CrossRef]
- Tricomi, F.G. Integral Equations; Dover Publications: New York, NY, USA, 1982. [Google Scholar]
- Abbasbandy, S. Numerical solutions of the integral equations: Homotopy perturbation method and Adomian’s decomposition method. Appl. Math. Comput. 2006, 173, 493–500. [Google Scholar] [CrossRef]
- Liao, S. Beyond Perturbation: Introduction to the homotopy analysis method. In Modern Mechanics and Mathematics; Chapman and Hall: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2003; Volume 2, pp. 1–336. [Google Scholar]
- Babolian, E.; Goghary, H.S.; Abbasbandy, S. Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl. Math. Comput. 2005, 161, 733–744. [Google Scholar] [CrossRef]
- Jafarian, A.; Nia, S.M.; Tavan, S. A numerical scheme to solve fuzzy linear volterra integral equations system. J. Appl. Math. 2012, 2012, 216923. [Google Scholar] [CrossRef]
- Kanwal, R.P.; Liu, K.C. A Taylor expansion approach for solving integral equations. Int. J. Math. Educ. Sci. Technol. 1989, 20, 411–414. [Google Scholar] [CrossRef]
- Xu, L. Variational iteration method for solving integral equations. Comput. Math. Appl. 2007, 54, 1071–1078. [Google Scholar] [CrossRef]
- Amawi, M. Fuzzy Fredholm Integral Equation of the Second Kind. Master’s Thesis, An-Najah National University, Nablus, Palestine, 2014. [Google Scholar]
- Amawi, M.; Qatanani, N. Numerical methods for solving fuzzy Fredholm integral equation of the second kind. Int. J. Appl. Math. 2015, 28, 177–195. [Google Scholar] [CrossRef]
- Hamaydi, J. Analytical and Numerical Methods for Solving Linear Fuzzy Volterra Integral Equation of the Second Kind. Master’s Thesis, Najah National University, Nablus, Palestine, 2016. [Google Scholar]
- Biswas, S.; Roy, T.K. Adomian decomposition method for fuzzy differential equations with linear differential operator. J. Inf. Comput. Sci. 2016, 11, 243–250. [Google Scholar]
- Cuong, B.C. Picture fuzzy sets. J. Comput. Sci. Cybern. 2014, 30, 409–420. [Google Scholar]
- Dutta, P.; Ganju, S. Operations on Picture Fuzzy Numbers and Their Application in Multicriteria Group Decision Making Problems. Trans. Razmadze Math. Inst. 2018, 172, 164–175. [Google Scholar] [CrossRef]
- Hanss, M. Applied Fuzzy Arithmetic; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wu, C.; Gong, Z. On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets Syst. 2001, 120, 523–532. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluver Academic Publishers: Boston, MA, USA, 1994; p. 12. [Google Scholar]
- El-Kalla, I.L. Convergence of the Adomian method applied to a class of nonlinear integral equations. J. Appl. Math. 2008, 21, 372–376. [Google Scholar] [CrossRef]
- El-Kalla, I.L. Error estimates for series solutions to a class of nonlinear integral equations of mixed type. J. Appl. Math. Comput. 2012, 38, 341–351. [Google Scholar] [CrossRef]
- El-Kalla, I.L. A new approach for solving a class of nonlinear integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4634–4641. [Google Scholar] [CrossRef]
Exact Solution | Approximate Solution | Error | ||||
---|---|---|---|---|---|---|
0 | 2.18375 | 1.653125 | 10.22 | 1.5 | 2.5 | |
1 | 2.18375 | 1.653125 | 10.22 | 1.2403125 | 5.7421875 | |
2 | 2.18375 | 1.653125 | 10.22 | 0.848029 | 30.29368401 | |
3 | 2.18375 | 1.653125 | 10.22 | 0.39643344 | 843.1435733 | 1.25669156 |
4 | 2.18375 | 1.653125 | 10.22 | 0.08663405 | 653,131.1845 | 1.56649095 |
5 | 2.18375 | 1.653125 | 10.22 | 4.137384182 | 3.919206912 | 1.648987616 |
6 | 2.18375 | 1.653125 | 10.22 | 9.436268765 | 1.653115564 |
Exact Solution | Approximate Solution | Error | ||||
---|---|---|---|---|---|---|
0 | 2.18375 | 3.00265625 | 1.36484375 | 2.75 | 1.25 | 0.1148 |
1 | 2.18375 | 3.00265625 | 1.36484375 | 7.642851563 | 0.7177734375 | 0.6470 |
2 | 2.18375 | 3.00265625 | 1.36484375 | 59.03382004 | 0.2366694063 | 1.1281 |
3 | 2.18375 | 3.00265625 | 1.36484375 | 3522.019948 | 0.02573069987 | 1.339 |
4 | 2.18375 | 3.00265625 | 1.36484375 | 12,536,423.65 | 3.0413790 | 1.364 |
5 | 2.18375 | 3.00265625 | 1.36484375 | 1.5883176 | 4.2492126 | 1.3648 |
6 | 2.18375 | 3.00265625 | 1.36484375 | 2.5495571 | 8.294386 | 1.3648 |
7 | 2.18375 | 3.00265625 | 1.36484375 | 6.569306 | 3.1603554 | 1.3648 |
Exact Solution | Approximate Solution | Error | ||||
---|---|---|---|---|---|---|
0 | 2.18375 | 3.275625 | 1.091875 | 3 | 1 | 0.0918 |
1 | 2.18375 | 3.275625 | 1.091875 | 9.9225 | 0.3675 | 0.7253 |
2 | 2.18375 | 3.275625 | 1.091875 | 108.5477469 | 0.04963317188 | 1.0422 |
3 | 2.18375 | 3.275625 | 1.091875 | 12,990.33122 | 9.053185183 | 1.0909 |
4 | 2.18375 | 3.275625 | 1.091875 | 186,045,447.6 | 3.012035952 | 1.0918 |
5 | 2.18375 | 3.275625 | 1.091875 | 3.81607317 | 3.334092511 | 1.0918 |
6 | 2.18375 | 3.275625 | 1.091875 | 1.605506192 | 4.085193531 | 1.0918 |
7 | 2.18375 | 3.275625 | 1.091875 | 2.841859271 | 6.133136272 | 1.0918 |
Approximate Solution | ||||||
---|---|---|---|---|---|---|
with [1, 2, 3,- | ||||||
0 | 1.2 | 2.8 | 1.833333 | 2.16667 | 1.875 | 2.125 |
1 | 0.63504 | 8.06736 | 2.264540376 | 3.73796289 | 2.422485352 | 3.526420898 |
2 | 0.1778446285 | 66.969884 | 3.455086425 | 11.12549688 | 4.043718684 | 9.711461012 |
3 | 0.01394826194 | 445.001793 | 8.042972958 | 98.55718212 | 11.26731627 | 73.65214843 |
4 | 8.57983189 | 21915890.55 | 43.58449269 | 7734.388825 | 87.47814906 | 4236.303995 |
5 | 3.24635602 | 4.942351 | 1279.860892 | 47,632,288.51 | 5273.000179 | 14,014,916.43 |
Approximate Solution | ||||||
---|---|---|---|---|---|---|
with [1, 2, 3,- | ||||||
0 | 3 | 1 | 3.666667 | 0.33333 | 1.666667 | 2.33333 |
1 | 5.0625 | 0.1875 | 9.243057236 | 6.944305556 | 0.8680559028 | 2.38193763 |
2 | 14.41625977 | 6.591796875 | 58.73594861 | 3.013961229 | 0.2354753282 | 2.482211776 |
3 | 116.9035569 | 8.147209883 | 2371.814266 | 5.67747643 | 0.01732769694 | 2.695601693 |
4 | 7687.373411 | 1.244569291 | 3,867,533.251 | 2.01460866 | 9.3827837 | 3.178992464 |
5 | 33,241,336.85 | 2.90428635 | 1.028349 | 2.53665504 | 2.7511447 | 4.421371974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, M.; Shokry, M.; Abd-Elmonem, R.A.; El-Kalla, I.L. New View on Nonlinear Picture Fuzzy Integral Equations. Fractal Fract. 2023, 7, 377. https://doi.org/10.3390/fractalfract7050377
Shehata M, Shokry M, Abd-Elmonem RA, El-Kalla IL. New View on Nonlinear Picture Fuzzy Integral Equations. Fractal and Fractional. 2023; 7(5):377. https://doi.org/10.3390/fractalfract7050377
Chicago/Turabian StyleShehata, M., M. Shokry, R. A. Abd-Elmonem, and I. L. El-Kalla. 2023. "New View on Nonlinear Picture Fuzzy Integral Equations" Fractal and Fractional 7, no. 5: 377. https://doi.org/10.3390/fractalfract7050377
APA StyleShehata, M., Shokry, M., Abd-Elmonem, R. A., & El-Kalla, I. L. (2023). New View on Nonlinear Picture Fuzzy Integral Equations. Fractal and Fractional, 7(5), 377. https://doi.org/10.3390/fractalfract7050377