Some Properties of Fractal Tsallis Entropy
Abstract
:1. Introduction
2. Fractal Tsallis Entropy
3. Fractal Tsallis Divergence
4. Thermodynamic Properties
4.1. Lesche Stability
4.2. Generic Example in the Microcanonical Ensemble
5. Complexity Measures
5.1. Disequilibrium Measure Based on Euclidean Distance
5.2. Disequilibrium Measure Based on Wootters’ Distance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abe, S.; Suzuki, N. Law for the distance between successive earthquakes. J. Geophys. Res. 2003, 108, 2113. [Google Scholar] [CrossRef]
- Darooneh, A.H.; Dadashinia, C. Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint. Phys. A 2008, 387, 3647–3654. [Google Scholar] [CrossRef]
- Hasumi, T. Hypocenter interval statistics between successive earthquakes in the twodimensional Burridge-Knopoff model. Phys. A 2009, 388, 477–482. [Google Scholar] [CrossRef]
- Ramírez-Rojas, A.; Flores-Márquez, E.L.; Sarlis, N.V.; Varotsos, P.A. The complexity measures associated with the fluctuations of the entropy in natural time before the deadly México M8.2 Earthquake on 7 September 2017. Entropy 2018, 20, 477. [Google Scholar] [CrossRef] [PubMed]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. A remarkable change of the entropy of seismicity in natural time under time reversal before the super-giant M9 Tohoku earthquake on 11 March 2011. EPL 2018, 124, 29001. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Tsallis entropy index q and the complexity measure of seismicity in natural time under time reversal before the M9 Tohoku earthquake in 2011. Entropy 2018, 20, 757. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Chen, W.; Zhou, W.X. Scaling in the distribution of intertrade durations of Chinese stocks. Phys. A 2008, 387, 5818–5825. [Google Scholar] [CrossRef]
- Kaizoji, T. An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics. Phys. A 2006, 370, 109–113. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Silva, R., Jr.; Santos, J. Plasma oscillations and nonextensive statistics. Phys. Rev. E 2000, 61, 3260. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 2009, 114, A11105. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Thermodynamic definitions of temperature and kappa and introduction of the entropy defect. Entropy 2021, 23, 1683. [Google Scholar] [CrossRef] [PubMed]
- Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 1967, 15, 52–60. [Google Scholar] [CrossRef]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy, divergence rates and weighted divergence rates for Markov chains. I: The alpha-gamma and beta-gamma case. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2017, 18, 293–301. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains. II: The weighted case. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2018, 19, 3–10. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains. III: The Cressie and Read case and applications. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2018, 19, 413–421. [Google Scholar]
- Abreul, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis’ statistics. Europhys. Lett. 2016, 114, 55001. [Google Scholar] [CrossRef]
- Cure, M.; Rial, D.F.; Christen, A.; Cassetti, J. A method to deconvolve stellar rotational velocities. Astron. Astrophys. 2014, 564, A85. [Google Scholar] [CrossRef]
- Toma, A. Model selection criteria using divergences. Entropy 2014, 16, 2686–2698. [Google Scholar] [CrossRef]
- Toma, A.; Karagrigoriou, A.; Trentou, P. Robust model selection criteria based on pseudodistances. Entropy 2020, 22, 304. [Google Scholar] [CrossRef]
- Preda, V.; Dedu, S.; Sheraz, M. New measure selection for Hunt-Devolder semi-Markov regime switching interest rate models. Phys. A 2014, 407, 350–359. [Google Scholar] [CrossRef]
- Preda, V.; Dedu, S.; Iatan, I.; Dănilă Cernat, I.; Sheraz, M. Tsallis entropy for loss models and survival models involving truncated and censored random variables. Entropy 2022, 24, 1654. [Google Scholar] [CrossRef] [PubMed]
- Trivellato, B. The minimal k-entropy martingale measure. Int. J. Theor. Appl. Financ. 2012, 15, 1250038. [Google Scholar] [CrossRef]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef]
- Hirică, I.-E.; Pripoae, C.-L.; Pripoae, G.-T.; Preda, V. Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Kaniadakis entropy. Mathematics 2022, 10, 2776. [Google Scholar] [CrossRef]
- Pripoae, C.-L.; Hirică, I.-E.; Pripoae, G.-T.; Preda, V. Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Tsallis entropy. Carpathian J. Math. 2022, 38, 597–617. [Google Scholar] [CrossRef]
- Deng, B.; Cai, L.; Li, S.; Wang, R.; Yu, H.; Chen, Y. Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s disease. Cogn. Neurodyn 2017, 11, 217–231. [Google Scholar] [CrossRef]
- Tylová, L.; Kukal, J.; Hubata-Vacek, V.; Vyšata, O. Unbiased estimation of permutation entropy in EEG analysis for Alzheimer’s disease classification. Biomed. Signal Process. Control 2018, 39, 424–430. [Google Scholar] [CrossRef]
- Yin, Y.; Sun, K.; He, S. Multiscale permutation Rényi entropy and its application for EEG signals. PLoS ONE 2018, 13, 0202558. [Google Scholar] [CrossRef]
- Chen, K.; Ramabadran, T.V. Near-lossless compression of medical images through entropy-coded DPCM. IEEE Trans. Med. Imaging 1994, 13, 538–548. [Google Scholar] [CrossRef]
- Rodrigues, P.; Giraldi, G. Improving the non-extensive medical image segmentation based on Tsallis entropy. Pattern Anal. Appl. 2011, 14, 369–379. [Google Scholar] [CrossRef]
- Studholme, C.; Hill, D.L.G.; Hawkes, D.J. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 1999, 32, 71–86. [Google Scholar] [CrossRef]
- Cuesta-Frau, D. Slope entropy: A new time series complexity estimator based on both symbolic patterns and amplitude information. Entropy 2019, 21, 1167. [Google Scholar] [CrossRef]
- Zhang, H.; Su, M. Hand gesture recognition of double-channel EMG signals based on sample entropy and PSO-SVM. J. Phys. Conf. Ser. 2020, 1631, 012001. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Christopoulos, S.-R.G.; Bemplidaki, M.M. Change ∆S of the entropy in natural time under time reversal: Complexity measures upon change of scale. Europhys. Lett. 2015, 109, 18002. [Google Scholar] [CrossRef]
- Baldoumas, G.; Peschos, D.; Tatsis, G.; Chronopoulos, S.K.; Christofilakis, V.; Kostarakis, P.; Varotsos, P.; Sarlis, N.V.; Skordas, E.S.; Bechlioulis, A.; et al. A prototype photoplethysmography electronic device that distinguishes congestive heart failure from healthy individuals by applying natural time analysis. Electronics 2019, 8, 1288. [Google Scholar] [CrossRef]
- Wang, Q.A. Extensive generalization of statistical mechanics based on incomplete information theory. Entropy 2003, 5, 220–232. [Google Scholar] [CrossRef]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar] [CrossRef]
- Ubriaco, M.R. A simple mathematical model for anomalous diffusion via Fisher’s information theory. Phys. Lett. A 2009, 373, 4017–4021. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Chinnarasu, R.; Jambulingam, S. A fractional entropy in fractal phase space: Properties and characterization. Int. J. Stat. Mech. 2014, 2014, 460364. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Mancini, H.L.; Calbet, X. A statistical measure of complexity. Phys. Lett. A 1995, 209, 321–326. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Steinberg, S. On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. 2008, 76, 307–328. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Furuichi, S.; Yanagi, K.; Kuriyama, K. Fundamental properties of Tsallis relative entropy. J. Math. Phys. 2004, 45, 4868–4877. [Google Scholar] [CrossRef]
- Huang, J.; Yong, W.-A.; Hong, L. Generalization of the Kullback-Leibler divergence in the Tsallis statistics. J. Math. Anal. Appl. 2016, 436, 501–512. [Google Scholar] [CrossRef]
- Sfetcu, R.-C. Tsallis and Rényi divergences of generalized Jacobi polynomials. Phys. A 2016, 460, 131–138. [Google Scholar] [CrossRef]
- Sfetcu, R.-C.; Sfetcu, S.-C.; Preda, V. On Tsallis and Kaniadakis divergences. Math. Phys. Anal. Geom. 2022, 25, 23. [Google Scholar] [CrossRef]
- Lesche, B. Instabilities of Rényi entropies. J. Stat. Phys. 1982, 27, 419–422. [Google Scholar] [CrossRef]
- Lesche, B. Rényi entropies and observables. Phys. Rev. E 2004, 70, 017102. [Google Scholar] [CrossRef]
- Abe, S.; Kaniadakis, G.; Scarfone, A.M. Stabilities of generalized entropies. J. Phys. A Math. Gen. 2004, 37, 10513–10519. [Google Scholar] [CrossRef]
- Yamano, T. A statistical complexity measure with nonextensive entropy and quasi-multiplicativity. J. Math. Phys. 2004, 45, 1974–1987. [Google Scholar] [CrossRef]
- Martin, M.T.; Plastino, A.; Rosso, O.A. Statistical complexity and disequilibrium. Phys. Lett. A 2003, 311, 126–132. [Google Scholar] [CrossRef]
- Wootters, W.K. Statistical distance and Hilbert space. Phys. Rev. D Part. Fields 1981, 23, 357–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preda, V.; Sfetcu, R.-C. Some Properties of Fractal Tsallis Entropy. Fractal Fract. 2023, 7, 375. https://doi.org/10.3390/fractalfract7050375
Preda V, Sfetcu R-C. Some Properties of Fractal Tsallis Entropy. Fractal and Fractional. 2023; 7(5):375. https://doi.org/10.3390/fractalfract7050375
Chicago/Turabian StylePreda, Vasile, and Răzvan-Cornel Sfetcu. 2023. "Some Properties of Fractal Tsallis Entropy" Fractal and Fractional 7, no. 5: 375. https://doi.org/10.3390/fractalfract7050375
APA StylePreda, V., & Sfetcu, R. -C. (2023). Some Properties of Fractal Tsallis Entropy. Fractal and Fractional, 7(5), 375. https://doi.org/10.3390/fractalfract7050375