Octonion Special Affine Fourier Transform: Pitt’s Inequality and the Uncertainty Principles
Abstract
:1. Introduction
- To propose a novel integral transform coined as octonion special affine Fourier transform (SAFT).
- To discuss the primarily characterizations of our obtained transform including the closed-form representation and its relation with QSAFT, inversion formula, and energy conservation.
- To establish Pitt’s inequality for the proposed transform.
- To derive Hausdorff–Young inequality associated with the SAFT.
- To formulate the logarithmic uncertainty inequality, Heisenberg–Weyl inequality, and local uncertainty inequality associated with the octonion special affine Fourier transform (SAFT).
2. Preliminaries
2.1. Octonion Algebra
2.2. Special Affine Fourier Transform
3. Octonionic Special Affine Fourier Transform
3.1. Octonion Fourier Transform
3.2. Octonion Linear Canonical Transform
4. Uncertainty Inequalities for SAFT
4.1. Hausdorff–Young Inequality for SAFT
4.2. Pitt’s Inequality and the Logarithmic Uncertainty Principle
4.3. Heisenberg–Weyl Inequality
4.4. Local Uncertainty Principle for SAFT
5. Possible Applications and Illustrative Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAFT | Special affine Fourier transform |
SAFT | Octonion special affine Fourier transform |
OFT | Octonion Fourier transform |
References
- Brackx, F.; Hitzer, E.; Sangwine, S. History of quaternion and Clifford-Fourier transforms and wavelets. In Quaternion and Clifford Fourier Transforms and Wavelets; Trends in Mathematics; Birkhäuser: Basel, Switzerland, 2013; Volume 27, pp. XI–XXVII. [Google Scholar]
- De Bie, H. Fourier transforms in Clifford analysis. In Operator Theory; Alpay, D., Ed.; Springer: Basel, Switzerland, 2015. [Google Scholar]
- Snopek, K.M. The study of properties of n-d analytic signals and their spectra in complex and hypercomplex domains. Radio Eng. 2012, 21, 29–36. [Google Scholar]
- Pei, S.C.; Chang, J.H.; Ding, J.J. Color pattern recognition by quaternion correlation. In Proceedings of the IEEE International Conference Image Processing, Thessaloniki, Greece, 7–10 October 2001; pp. 894–897. [Google Scholar]
- Sangwine, S.J.; Ell, T.A. Colour image filters based on hypercomplex convolution. IEEE Proc. Vis. Image Signal Process. 2000, 49, 89–93. [Google Scholar] [CrossRef]
- Witten, B.; Shragge, J. Quaternion-based signal processing, stanford exploration project. Presented at the 2006 SEG Annual Meeting, New Orleans, LA, USA, 1–6 October 2006; pp. 2862–2866. [Google Scholar]
- Took, C.C.; Mandic, D.P. The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process. 2009, 57, 1316–1327. [Google Scholar] [CrossRef]
- Bülow, T.; Sommer, G. The hypercomplex signal-a novel extensions of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 2001, 49, 2844–2852. [Google Scholar] [CrossRef]
- Bas, P.; LeBihan, N.; Chassery, J.M. Color image water marking using quaternion Fourier transform. In Proceedings of the IEEE International Conference on Acoustics Speechand Signal and Signal Processing, ICASSP, Hong Kong, China, 6–10 April 2003; pp. 521–524. [Google Scholar]
- Yang, Y.; Kou, K.I. On uncertainty principles for hypercomplex signals in the linear canonical transform domains. Signal Process. 2014, 95, 67–75. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, B.Z. Novel uncertainty principles for two-sided quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 2018, 28, 15. [Google Scholar] [CrossRef]
- Kou, K.I.; Ou, J.; Morais, J. Uncertainty principles associated with quaternionic linear canonical transforms. Math. Meth. Appl. Sci. 2016, 39, 2722–2736. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty principle for the two-sided quaternion windowed linear canonical transform. Circuits Syst. Signal Process. 2022, 41, 1324–1348. [Google Scholar] [CrossRef]
- Roopkumar, R. One dimensional quaternion special special affine Fourier transform. Adv. Appl. Clifford Algebr. 2021, 31, 73. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. The algebra of 2D Gabor quaternionic special affine Fourier transform and uncertainty principles. J. Anal. 2022, 30, 637–649. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Donoho Starks and Hardys Uncertainty Principles for the Shortotime Quaternion Special Affine Fourier Transform. arXiv 2021, arXiv:2110.02754. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with the Quaternion Special Affine Fourier Transform. Signal Image Video Process. 2022, 16, 1235–1242. [Google Scholar] [CrossRef]
- Haoui, E.Y.; Hitzer, E. Generalized uncertainty principles associated with the quaternionic special affine Fourier transform. Complex Var. Elliptic Equ. 2022, 67, 2102–2121. [Google Scholar] [CrossRef]
- Hahn, S.; Snopek, K. The unified theory of n-dimensional complex and hyper- complex analytic signals. Bull. Polish Acad. Sci. Tech. Sci. 2011, 59, 167–181. [Google Scholar]
- Blaszczyk, L.; Snopek, K. Octonion Fourier transform of real-valued functions of three variables-selected properties and examples. Signal Process. 2017, 136, 29–37. [Google Scholar] [CrossRef]
- Lian, P. The octonionic Fourier transform: Uncertainty relations and convolution. Signal Process. 2019, 164, 295–300. [Google Scholar] [CrossRef]
- Blaszczyk, L. A generalization of the octonion Fourier transform to 3-D octonion-valued signals: Properties and possible applications to 3-D LTI partial differential systems. Multidimens. Syst. Signal Process. 2020, 31, 1227–1257. [Google Scholar] [CrossRef]
- Blaszczyk, L. Discrete octonion Fourier transform and the analysis of discrete 3-D data. Comput. Appl. Math. 2020, 39, 329. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. The octonion linear canonical transform. Signal Process. 2021, 188, 108233. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Octonion spectrum of 3D short-time LCT signals. Opt. Int. J. Light Electron Opt. 2022, 261, 169156. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Wigner distribution and associated uncertainty principles in the framework of octonion linear canonical transform. Opt. Int. J. Light Electron Opt. 2023, 272, 170213. [Google Scholar] [CrossRef]
- Conway, J.H.; Smith, D.A. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry; A K Peters Ltd.: Natick, MA, USA, 2003. [Google Scholar]
- Xu, S.; Chai, Y.; Hu, Y.; Jiang, C.; Li, Y. Reconstruction of digital spectrum from periodic nonuniformly sampled signals in special affine Fourier transform domain. Opt. Commun. 2015, 348, 59–65. [Google Scholar] [CrossRef]
- Kou, K.I.; Morais, J.; Zhang, Y. Generalized prolate spheroidal wave functions for offset linear canonical transform in clifford analysis. Math. Meth. App. Sci. 2013, 36, 1028–1041. [Google Scholar] [CrossRef]
- Heredia, C.J.; Garcia, E.A.; Espinosa, C.V. One dimensional octonion Fourier transform. J. Math. Control. Sci. Appl. 2021, 7, 91–106. [Google Scholar]
- Zhu, X.; Zheng, X. Uncertainty principles for the two-sided offset quaternion linear canonical transform. Math. Methods Appl. Sci. 2021, 44, 14236–14255. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. The Two-Sided Short-time Quaternionic Offset Linear Canonical Transform and associated Convolution and Correlation. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Li, C.; Li, B.; Xiao, L.; Hu, Y.; Tian, L. A watermarking method based on hypercom-plex Fourier transform and visual attention. J. Inf. Comput. Sci. 2012, 9, 4485–4492. [Google Scholar]
- Zhao, H.; Wang, R.Y.; Song, D.P. Recovery of bandlimited signals in linear canonical transform domain from noisy samples. Circuits Syst. Signal Process. 2014, 33, 1997–2008. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty principles for the short-time linear canonical transform of complex signals. Digit. Signal Process. 2021, 111, 102953. [Google Scholar] [CrossRef]
- Stern, A. Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2008, 25, 647–652. [Google Scholar] [CrossRef]
· | 1 | |||||||
1 | 1 | |||||||
−1 | − | − | − | |||||
− | −1 | − | − | |||||
− | −1 | − | − | |||||
− | − | − | −1 | |||||
− | − | −1 | − | |||||
− | − | −1 | − | |||||
− | − | − | −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, M.Y.; Dar, A.H.; Zayed, M.; Araci, S. Octonion Special Affine Fourier Transform: Pitt’s Inequality and the Uncertainty Principles. Fractal Fract. 2023, 7, 356. https://doi.org/10.3390/fractalfract7050356
Bhat MY, Dar AH, Zayed M, Araci S. Octonion Special Affine Fourier Transform: Pitt’s Inequality and the Uncertainty Principles. Fractal and Fractional. 2023; 7(5):356. https://doi.org/10.3390/fractalfract7050356
Chicago/Turabian StyleBhat, Mohammad Younus, Aamir Hamid Dar, Mohra Zayed, and Serkan Araci. 2023. "Octonion Special Affine Fourier Transform: Pitt’s Inequality and the Uncertainty Principles" Fractal and Fractional 7, no. 5: 356. https://doi.org/10.3390/fractalfract7050356
APA StyleBhat, M. Y., Dar, A. H., Zayed, M., & Araci, S. (2023). Octonion Special Affine Fourier Transform: Pitt’s Inequality and the Uncertainty Principles. Fractal and Fractional, 7(5), 356. https://doi.org/10.3390/fractalfract7050356