A Numerical Algorithm for Solving Nonlocal Nonlinear Stochastic Delayed Systems with Variable-Order Fractional Brownian Noise
Abstract
:1. Introduction
- An accurate and computationally efficient technique for solving FSDDE-VOFBM with Hurst index was proposed;
- A cubic spline interpolation method for time discretization was adopted;
- Error and convergence analysis of the suggested scheme was performed;
- The proposed numerical technique was applied to fractional stochastic dynamical systems and assessed from the perspective of statistical indicators of stochastic responses.
2. Computational Implementation
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ortigueira, M.; Machado, J. Which derivative? Fractal Fract. 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equations 2021, 2021, 117. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Moghaddam, B.; Mendes Lopes, A.; Tenreiro Machado, J.; Mostaghim, Z. Computational scheme for solving nonlinear fractional stochastic differential equations with delay. Stoch. Anal. Appl. 2019, 37, 893–908. [Google Scholar] [CrossRef]
- Tarasov, V.E. Mathematical Economics: Application of Fractional Calculus. Mathematics 2020, 8, 660. [Google Scholar] [CrossRef]
- Milici, C.; Drăgănescu, G.; Machado, J.T. Introduction to Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2018; Volume 25. [Google Scholar]
- Wang, K.J.; Shi, F. A New Perspective on the Exact Solutions of the Local Fractional Modified Benjamin–Bona–Mahony Equation on Cantor Sets. Fractal Fract. 2023, 7, 72. [Google Scholar] [CrossRef]
- Szajek, K.; Sumelka, W.; Blaszczyk, T.; Bekus, K. On selected aspects of space-fractional continuum mechanics model approximation. Int. J. Mech. Sci. 2020, 167, 105287. [Google Scholar] [CrossRef]
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Philos. Trans. R. Soc. A 2020, 378, 20200050. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, H.; Zou, Q.; Li, C.; Chen, J.; Gao, R. Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mech. Mater. 2020, 150, 103600. [Google Scholar] [CrossRef]
- Kumar, D.; Baleanu, D. Fractional calculus and its applications in physics. Front. Phys. 2019, 7, 81. [Google Scholar] [CrossRef]
- Goldfain, E. Fractional dynamics and the standard model for particle physics. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1397–1404. [Google Scholar] [CrossRef]
- Ghita, M.; Birs, I.R.; Copot, D.; Muresan, C.I.; Ionescu, C.M. Bioelectrical impedance analysis of thermal-induced cutaneous nociception. Biomed. Signal Process. Control. 2023, 83, 104678. [Google Scholar] [CrossRef]
- Ghita, M.; Copot, D.; Ionescu, C.M. Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup. J. Adv. Res. 2021, 32, 61–71. [Google Scholar] [CrossRef]
- Tejado, I.; Valério, D.; Pérez, E.; Valério, N. Fractional calculus in economic growth modelling: The Spanish and Portuguese cases. Int. J. Dyn. Control. 2017, 5, 208–222. [Google Scholar] [CrossRef]
- Farman, M.; Akgül, A.; Baleanu, D.; Imtiaz, S.; Ahmad, A. Analysis of fractional order chaotic financial model with minimum interest rate impact. Fractal Fract. 2020, 4, 43. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Haeri, M.; Jafari, S.; Bolouki, S.; Siami, M. Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. Ind. Electron. 2008, 55, 4094–4101. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Jajarmi, A.; Defterli, Ö. On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control. Adv. Differ. Equations 2021, 2021, 234. [Google Scholar] [CrossRef]
- Zúñiga-Aguilar, C.; Gómez-Aguilar, J.; Escobar-Jiménez, R.; Romero-Ugalde, H. A novel method to solve variable-order fractional delay differential equations based in Lagrange interpolations. Chaos Solitons Fract. 2019, 126, 266–282. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Olayinka, O.G.; Mmaduabuchi, O. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations. Alex. Eng. J. 2016, 55, 1655–1659. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Chen, D.; Zhao, T.; Chen, Y. Fractional calculus in image processing: A review. Fract. Calc. Appl. Anal. 2016, 19, 1222–1249. [Google Scholar] [CrossRef] [Green Version]
- Ismail, S.M.; Said, L.A.; Radwan, A.G.; Madian, A.H.; Abu-ElYazeed, M.F. A novel image encryption system merging fractional-order edge detection and generalized chaotic maps. Signal Process. 2020, 167, 107280. [Google Scholar] [CrossRef]
- Rihan, F.A.; Alsakaji, H.J. Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE. Results Phys. 2021, 28, 104658. [Google Scholar] [CrossRef] [PubMed]
- Iyiola, O.S.; Oduro, B.; Zabilowicz, T.; Iyiola, B.; Kenes, D. System of time fractional models for COVID-19: Modeling, analysis and solutions. Symmetry 2021, 13, 787. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Oduro, B.; Zabilowicz, T.; Iyiola, B.; Kenes, D. Analysis and solutions of generalized Chagas vectors re-infestation model of fractional order type. Chaos Solitons Fractals 2021, 145, 110797. [Google Scholar] [CrossRef]
- Balachandran, K.; Kokila, J.; Trujillo, J. Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 2013, 33, 712–720. [Google Scholar] [CrossRef]
- Karakoç, F. Existence and uniqueness for fractional order functional differential equations with Hilfer derivative. Differ. Equations Appl. 2020, 12, 323–336. [Google Scholar] [CrossRef]
- Dabiri, A.; Butcher, E.A. Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl. Math. Model. 2018, 56, 424–448. [Google Scholar] [CrossRef]
- Heydari, M.H.; Mahmoudi, M.R.; Shakiba, A.; Avazzadeh, Z. Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 98–121. [Google Scholar] [CrossRef]
- Babaei, A.; Jafari, H.; Banihashemi, S. A collocation approach for solving time-fractional stochastic heat equation driven by an additive noise. Symmetry 2020, 12, 904. [Google Scholar] [CrossRef]
- Mostaghim, Z.S.; Moghaddam, B.P.; Haghgozar, H.S. Computational technique for simulating variable-order fractional Heston model with application in US stock market. Math. Sci. 2018, 12, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Saeed, U.; ur Rehman, M. Hermite Wavelet Method for Fractional Delay Differential Equations. J. Differ. Equations 2014, 2014, 359093. [Google Scholar] [CrossRef] [Green Version]
- Banihashemi, S.; Jafari, H.; Babaei, A. A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order. J. Comput. Appl. Math. 2022, 403, 113845. [Google Scholar] [CrossRef]
- Doha, E.H.; Abdelkawy, M.A.; Amin, A.Z.M.; Lopes, A.M. Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations. Eng. Comput. 2021, 38, 1363–1373. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Taha, T.M.; Machado, J.A.T. A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 2015, 81, 1023–1052. [Google Scholar] [CrossRef]
- Hassani, H.; Avazzadeh, Z.; Machado, J. Numerical approach for solving variable-order space–time fractional telegraph equation using transcendental Bernstein series. Eng. Comput. 2020, 36, 867–878. [Google Scholar] [CrossRef]
- Hassani, H.; Machado, J.; Avazzadeh, Z. An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn. 2019, 97, 2041–2054. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Wade, B.A. Exponential integrator methods for systems of non-linear space-fractional models with super-diffusion processes in pattern formation. Comput. Math. Appl. 2018, 75, 3719–3736. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Wu, G.C. Some further results of the laplace transform for variable–order fractional difference equations. Fract. Calc. Appl. Anal. 2019, 22, 1641–1654. [Google Scholar] [CrossRef]
- Wu, G.C.; Luo, M.; Huang, L.L.; Banerjee, S. Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dyn. 2020, 100, 3611–3623. [Google Scholar] [CrossRef]
- Ma, C.Y.; Shiri, B.; Wu, G.C.; Baleanu, D. New fractional signal smoothing equations with short memory and variable order. Optik 2020, 218, 164507. [Google Scholar] [CrossRef]
- Sheng, H.; Sun, H.; Chen, Y.Q.; Qiu, T. Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process. 2011, 91, 1645–1650. [Google Scholar] [CrossRef]
- Shahnazi-Pour, A.; Moghaddam, B.P.; Babaei, A. Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion. J. Comput. Appl. Math. 2021, 386, 113210. [Google Scholar] [CrossRef]
- Corlay, S.; Lebovits, J.; Véhel, J.L. Multifractional stochastic volatility models. Math. Financ. 2014, 24, 364–402. [Google Scholar] [CrossRef]
- Sheng, H.; Chen, Y.Q.; Qiu, T. Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications; Springer Science & Business Media: Cham, Switzerland, 2011. [Google Scholar]
- Wu, G.C.; Wei, J.L.; Luo, C.; Huang, L.L. Parameter estimation of fractional uncertain differential equations via Adams method. Nonlinear Anal. Model. Control. 2022, 27, 413–427. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Sci. Publishers: London, UK, 1993. [Google Scholar]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How many fractional derivatives are there? Mathematics 2022, 10, 737. [Google Scholar] [CrossRef]
- Lv, J.; Yang, X. Nonlocal fractional stochastic differential equations driven by fractional Brownian motion. Adv. Differ. Equations 2017, 2017, 198. [Google Scholar] [CrossRef] [Green Version]
- El-Borai, M.M.; El-Nadi, K.E.S.; Fouad, H.A. On some fractional stochastic delay differential equations. Comput. Math. Appl. 2010, 59, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Mostaghim, Z.S.; Moghaddam, B.P.; Haghgozar, H.S. Numerical simulation of fractional-order dynamical systems in noisy environments. Comput. Appl. Math. 2018, 37, 6433–6447. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Mostaghim, Z.S.; Hashemi-Zadeh, E. Computational Method for Fractional-Order Stochastic Delay Differential Equations. J. New Res. Math. 2020, 6, 19–32. [Google Scholar]
- Boulet, J.; Balasubramaniam, R.; Daffertshofer, A.; Longtin, A. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2010, 368, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, W. Persistence and extinction of Markov switched stochastic Nicholson’s blowflies delayed differential equation. Int. J. Biomath. 2020, 13, 2050015. [Google Scholar] [CrossRef]
- Huang, C.; Yang, X.; Cao, J. Stability analysis of Nicholson’s blowflies equation with two different delays. Math. Comput. Simul. 2020, 171, 201–206. [Google Scholar] [CrossRef]
IQM-Algorithm [54] | -Algorithm | ||||||
---|---|---|---|---|---|---|---|
− | 35.703 | − | 26.344 | ||||
0.55 | 151.516 | 114.860 | |||||
708.140 | 494.953 | ||||||
− | 35.578 | − | 25.719 | ||||
0.75 | 147.922 | 111.859 | |||||
704.922 | 490.843 | ||||||
− | 35.641 | − | 25.438 | ||||
0.95 | 151.937 | 109.656 | |||||
705.917 | 499.797 |
Mean | |||
Median | |||
First quartile | |||
Third quartile | |||
Kurtosis | |||
Skewness | |||
Standard deviation | |||
95% Confidence interval |
-Algorithm [55] | -Algorithm | ||||||
---|---|---|---|---|---|---|---|
− | 10.140 | − | 25.907 | ||||
0.55 | 44.828 | 114.094 | |||||
194.265 | 495.860 | ||||||
− | 9.937 | − | 25.719 | ||||
0.75 | 4.328 | 115.375 | |||||
191.828 | 508.531 | ||||||
− | 10.687 | − | 26.391 | ||||
0.95 | 45.094 | 120.328 | |||||
185.047 | 494.093 |
Mean | |||
Median | |||
First quartile | |||
Third quartile | |||
Kurtosis | |||
Skewness | |||
Standard deviation | |||
95% Confidence interval |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghaddam, B.P.; Pishbin, M.; Mostaghim, Z.S.; Iyiola, O.S.; Galhano, A.; Lopes, A.M. A Numerical Algorithm for Solving Nonlocal Nonlinear Stochastic Delayed Systems with Variable-Order Fractional Brownian Noise. Fractal Fract. 2023, 7, 293. https://doi.org/10.3390/fractalfract7040293
Moghaddam BP, Pishbin M, Mostaghim ZS, Iyiola OS, Galhano A, Lopes AM. A Numerical Algorithm for Solving Nonlocal Nonlinear Stochastic Delayed Systems with Variable-Order Fractional Brownian Noise. Fractal and Fractional. 2023; 7(4):293. https://doi.org/10.3390/fractalfract7040293
Chicago/Turabian StyleMoghaddam, Behrouz Parsa, Maryam Pishbin, Zeinab Salamat Mostaghim, Olaniyi Samuel Iyiola, Alexandra Galhano, and António M. Lopes. 2023. "A Numerical Algorithm for Solving Nonlocal Nonlinear Stochastic Delayed Systems with Variable-Order Fractional Brownian Noise" Fractal and Fractional 7, no. 4: 293. https://doi.org/10.3390/fractalfract7040293
APA StyleMoghaddam, B. P., Pishbin, M., Mostaghim, Z. S., Iyiola, O. S., Galhano, A., & Lopes, A. M. (2023). A Numerical Algorithm for Solving Nonlocal Nonlinear Stochastic Delayed Systems with Variable-Order Fractional Brownian Noise. Fractal and Fractional, 7(4), 293. https://doi.org/10.3390/fractalfract7040293