Attitude Control of the Quadrotor UAV with Mismatched Disturbances Based on the Fractional-Order Sliding Mode and Backstepping Control Subject to Actuator Faults
Abstract
:1. Introduction
2. Mathematical Model of a Quadrotor UAV Attitude
3. New Fast Reaching Law Design Based on Improved Sigmoid Function
4. Quadrotor UAV Model with Mismatched Disturbances and Fault Tolerant Controller Design with a New Fractional-Order Sliding Mode Surface
4.1. Quadrotor UAV Model with Mismatched Disturbances
4.2. Nonlinear Disturbance Observer Design
4.3. Fault Tolerant Controller Design for an Adaptive Sliding Mode and Backstepping Based on a New Fractional-Order Sliding Mode Surface
5. Simulation Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xian, B.; Hao, W. Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo’s stuck fault: Theory and experiments. IEEE Trans. Ind. Inform. 2019, 15, 2158–2166. [Google Scholar] [CrossRef]
- Sun, H.; Yan, J.; Qu, Y.; Ren, J. Sensor fault-tolerant observer applied in UAV anti-skid braking control under control input constraint. J. Syst. Eng. Electron. 2017, 28, 126–136. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, Y.; Zhang, Y. Distributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturation. IEEE Trans. Control Syst. Technol. 2019, 27, 2417–2429. [Google Scholar] [CrossRef]
- Jung, D.; Tsiotras, P. Bank-to-turn control for a small UAV using backstepping and parameter adaptation. IFAC Proc. Vol. 2008, 41, 4406. [Google Scholar] [CrossRef] [Green Version]
- Zong, Q.; Zhang, R.; Dong, Q.; Zhang, C. Adaptive sliding mode control for fixed ving unmanned aerial vehicle. J. Harbin Inst. Technol. 2018, 50, 147–155. [Google Scholar]
- Liu, J.; Sun, F. Research and development on theory and algorithms of sliding mode control. Control Theory Appl. 2007, 3, 407–418. [Google Scholar]
- Cai, C.; Guo, L.; Liu, J. Fuzzy sliding mode predictive control of air flow rate for a high-speed high-temperature heat-airflow test system. Int. J. Aeronaut. Space Sci. 2020, 15, 708–714. [Google Scholar] [CrossRef]
- Zhao, F.; Luo, W.; Gao, F.; Yu, J. An improved sliding sode sontrol for PMSM considering sliding mode chattering and disturbance compensation. J. Xi Jiaotong Univ. 2020, 54, 28–35. [Google Scholar]
- Zheng, C.; Zhang, J.; Chen, R. Discrete-time sliding mode control based on improved disturbance compensation reaching law. Control Decis. 2019, 34, 880–884. [Google Scholar]
- Sami, I.; Ullah, S.; Khan, L.; Al-Durra, A.; Ro, J.S. Integer and fractional-order sliding mode control schemes in wind energy conversion systems: Comprehensive review, comparison, and technical insight. Fractal Fract. 2022, 6, 447. [Google Scholar] [CrossRef]
- Mao, J.; Li, Q.; Zhu, H. A continuous nonsingular fast terminal sliding mode control method. Control Decis. 2016, 31, 1873–1878. [Google Scholar]
- Junejo, A.K.; Xu, W.; Mu, C.; Ismail, M.M.; Liu, Y. Adaptive speed control of PMSM drive system based a new sliding-mode reaching law. IEEE Trans. Power Electron. 2020, 35, 12110–12121. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Ma, H.; Tang, H.; Xie, Y. A novel variable exponential discrete time sliding mode reaching law. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2518–2522. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Ma, D. Sliding mode extremum-seeking control for all-electric active braking system in unmanned aerial vehicle. Control Theory Appl. 2015, 32, 1439–1448. [Google Scholar]
- Rui, X.; Yin, W.; Dong, Y. Fractional-order sliding mode control for hybrid drive wind power generationsystem with disturbances in the grid. Wind Energy 2019, 22, 49. [Google Scholar] [CrossRef] [Green Version]
- Alebi, J.; Ganjefar, S. Fractional order sliding mode controllerdesign for large scale variable speed wind turbine for poweroptimization. Environ. Prog. Sustain. Energy 2018, 37, 2124. [Google Scholar]
- Jia, T.; Li, X.; Zhang, X. Neural network sliding mode control for vehicle inertial stabilized platform. Control Theory Appl. 2020, 38, 13–22. [Google Scholar]
- Farrell, J.A.; Polycarpou, M.; Sharma, M.; Dong, W. Command filtered backstepping. IEEE Trans. Autom. Control 2009, 54, 1391–1395. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, W.; Huang, D.; Che, J. Adaptive fuzzy backstepping control for underactuated quadrotor UAV. J. Northwestern Polytech. Univ. 2015, 3, 495–499. [Google Scholar]
- Feng, J.; Zhang, H.; Zhang, X.; Yang, F. Application of backstepping sliding mode algorithm in quadrotor UAV attitude fault-tolerant control. J. Northeast Agric. Univ. 2022, 53, 55–65. [Google Scholar]
- Chen, F.; Jiang, R.; Zhang, K.; Jiang, B.; Tao, G. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 2016, 63, 5044–5056. [Google Scholar] [CrossRef]
- Qiao, J.; Dai, Y.; Liu, J. Sliding backstepping control for helicopters with nonlinear disturbance observer. J. Beijing Inst. Technol. 2009, 29, 224–228. [Google Scholar]
- Fang, X.; Wu, A.; Dong, N. Robust trajectory tracking control for unmanned helicopter with mismatched disturbances. Control Theory Appl. 2015, 32, 1325–1334. [Google Scholar]
- Yu, C.; Jiang, J.; Zhen, Z.; Bhatia, A.; Wang, S. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties. Aerosp. Sci. Technol. 2020, 107, 106244. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Yu, X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 2013, 60, 160–169. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Li, S.; Yu, X. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Ind. Inform. 2014, 10, 604–614. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S. The method of quaternion and its application. Adv. Mech. 1993, 02, 249–260. [Google Scholar]
- Abaunza, H.; Castillo, P. Quadrotor aggressive deployment, using a quaternion-based spherical chattering-free sliding-mode controller. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1979–1991. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Li, J.; Wang, R.; Yang, K. Attitude Control of the Quadrotor UAV with Mismatched Disturbances Based on the Fractional-Order Sliding Mode and Backstepping Control Subject to Actuator Faults. Fractal Fract. 2023, 7, 227. https://doi.org/10.3390/fractalfract7030227
Sun H, Li J, Wang R, Yang K. Attitude Control of the Quadrotor UAV with Mismatched Disturbances Based on the Fractional-Order Sliding Mode and Backstepping Control Subject to Actuator Faults. Fractal and Fractional. 2023; 7(3):227. https://doi.org/10.3390/fractalfract7030227
Chicago/Turabian StyleSun, Hui, Jinming Li, Rui Wang, and Kaixin Yang. 2023. "Attitude Control of the Quadrotor UAV with Mismatched Disturbances Based on the Fractional-Order Sliding Mode and Backstepping Control Subject to Actuator Faults" Fractal and Fractional 7, no. 3: 227. https://doi.org/10.3390/fractalfract7030227
APA StyleSun, H., Li, J., Wang, R., & Yang, K. (2023). Attitude Control of the Quadrotor UAV with Mismatched Disturbances Based on the Fractional-Order Sliding Mode and Backstepping Control Subject to Actuator Faults. Fractal and Fractional, 7(3), 227. https://doi.org/10.3390/fractalfract7030227