New Fractional Cancer Mathematical Model via IL-10 Cytokine and Anti-PD-L1 Inhibitor
Abstract
:1. Introduction
2. Basic Tools
3. Model in Caputo Sense
3.1. Stability Analysis of the Model in Caputo Fractional Derivative
3.2. The Existence and Uniqueness of Solution in Caputo Fractional Derivative
- where × ; are positive constants.
- Y(t) is satisfied in Equation (17).
4. Comparing Numerical Results of Model with Caputo Derivate and ABC Derivative
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Bluestone, J.A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 2009, 10, 1185–1192. [Google Scholar] [CrossRef]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001, 2, 261–268. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Birnbaum, D.; Mamessier, E. The PD1/PDL1 axis, a promising therapeutic target in aggressive breast cancers. OncoImmunology 2016, 5, e1085148. [Google Scholar] [CrossRef]
- Muenst, S.; Schaerli, A.R.; Gao, F.; Daster, S.; Trella, E.; Droeser, R.A.; Muraro, M.G.; Zajac, P.; Zanetti, R.; Gillanders, W.E.; et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 2014, 146, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Chan, I.H.; Wu, V.; Bilardello, M.; Mar, E.; Oft, M.; Van Vlasselaer, P.; Mumm, J.B. The potentiation of IFN-γ and induction of cytotoxic proteins by pegylated IL-10 in human CD8 T cells. J. Interferon Cytokine Res. 2015, 35, 948–955. [Google Scholar] [CrossRef]
- Naing, A.; Papadopoulos, K.P.; Autio, K.A.; Ott, P.A.; Patel, M.R.; Wong, D.J.; Falchook, G.S.; Pant, S.; Whiteside, M.; Rasco, D.R.; et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J. Clin. Oncol. 2016, 34, 3562–3569. [Google Scholar] [CrossRef]
- Sun, H.; Gutierrez, P.; Jackson, M.J.; Kundu, N.; Fulton, A.M. Essential role of nitric oxide and interferon-gamma for tumor immunotherapy with interleukin-10. J. Immunother. 2010, 23, 208–214. [Google Scholar] [CrossRef]
- Podlunby, I. Fractional Differantial Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and applications to heat transfer model. Therm. Sci. 2016, 370, 763–769. [Google Scholar] [CrossRef]
- Piccoli, B.; Castiglione, F. Optimal vaccine scheduling in cancer immunotherapy. Phys. A 2006, 370, 672–680. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A. Equilibrium points, stability and numerical solutions of fractional-order predator-pey and rabies models. J. Math. Anal. Appl. 2007, 325, 542–553. [Google Scholar] [CrossRef]
- Bozkurt, F. Stability Analysis of a Fractional-Order Differential Equation System of a GBM-IS Interaction Depending on the Density. Appl. Math. Inf. Sci. 2014, 8, 1021–1028. [Google Scholar] [CrossRef]
- El-Sayeda, A.M.A.; El-Mesiryb, A.E.M.; El-Sakab, H.A.A. On the fractional-order logistic equation. Appl. Math. 2007, 20, 817–823. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA, 2005. [Google Scholar]
- Iqbal, S.A.; Hafez, G.; Chu, Y.M.; Park, C. Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. JAAC 2022, 12, 770–789. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.M.; Yassen, M.F.; Ahmad, I.; Pongsakorn, S.; Khan, M.A. A fractional Sars-Cov-2 model with Atangana-Baleanu derivative: Application to fourth wave. Fractals 2022, 30, 2240210. [Google Scholar] [CrossRef]
- Khan, D.; Ali, G.; Khan, A.; Khan, I.; Chu, Y.M.; Nisar, K.S. A New Idea of Fractal-Fractional Derivative with Power Law Kernel for Free Convection Heat Transfer in a Channel Flow between Two Static Upright Parallel Plates. Comput. Mater. Contin. 2020, 65, 1237–1251. [Google Scholar] [CrossRef]
- Nigmatullin, R.R.; Baleanu, D. Is it possible to derive Newtonian equations of motion with memory? Int. J. Theor. Phys. 2010, 49, 701–708. [Google Scholar] [CrossRef]
- Pinto, C.M.A.; Machado, J.A.T. Fractional model for malaria transmission under control strategies. Comput. Math. Appl. 2013, 66, 908–916. [Google Scholar] [CrossRef]
- Baleanu, D. About fractional quantization and fractional variational principles. Commun. Nonlin. Sci. 2009, 14, 2520–2523. [Google Scholar] [CrossRef]
- Pinto, C.M.A.; Machado, J.A.T. Complex order van der Pol oscillator. Nonlinear Dyn. 2010, 65, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T.; Ozdemir, N.; Baleanu, D. Mathematical Modelling and Optimization of Engineering Problems; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hristov, J. Magnetic field diffusion in ferromagnetic materials: Fractional calculus approaches. Int. J. Optim. Control Theor. Appl. 2021, 11, 1–5. [Google Scholar] [CrossRef]
- Uçar, S. Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey. J. Comput. Appl. Math. 2023, 419, 114692. [Google Scholar] [CrossRef]
- Uçar, S. Existence and Uniqueness Results for a Smoking Model with Determination and Education in the Frame of Non-Singular Derivatives. Discrete Contin. Dyn. Syst. Ser. S 2021, 14, 2571–2589. [Google Scholar] [CrossRef]
- Din, A.; Li, Y.; Yusuf, A.; Ali, A.I. Caputo Type Fractional Operator Applied to Hepatitis B System. Fractals 2021, 10, 2240023. [Google Scholar] [CrossRef]
- Ghanbari, B.; Kumar, S. A study on fractional predator-prey-pathogen model with Mittag-Leffler kernel-based operators. Numer. Methods Partial. Differ. Equ. 2020. [Google Scholar] [CrossRef]
- Joshi, H.; Jha, B.K. Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math. Model. Numer. Simul. Appl. 2021, 1, 84–94. [Google Scholar]
- Naik, P.A.; Eskandari, Z.; Yavuz, M.; Zu, J. Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect. J. Comput. Appl. Math. 2022, 413, 114401. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Özdemir, N. Numerical solutions and synchronization of a variable-order fractional chaotic system. Math. Model. Numer. Simul. Appl. 2021, 1, 11–23. [Google Scholar] [CrossRef]
- Evirgen, F. Transmission of Nipah virus dynamics under Caputo fractional derivative. J. Comput. Appl. Math. 2023, 418, 114654. [Google Scholar] [CrossRef]
- Shafik, M.; Abbas, M.; Abdullah, M.A.; Majeed, A.; Abdeljawad, T.; Alqudah, M. Numerical solutions of time fractional Burgers’ equation involving Atangana–Baleanu derivative via cubic B-spline functions. Results Phys. 2022, 34, 105244. [Google Scholar] [CrossRef]
- Koca, I. Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control Theor. Appl. 2018, 8, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Hamou, A.A.; Rasul, R.R.; Hammouch, Z.; Ozdemir, N. Analysis of rubella disease model with non-local and non-singular fractional derivatives. Comput. Appl. Math. 2022, 41, 1–33. [Google Scholar]
- Özdemir, N.; Uçar, E. Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel. AIMS Math. 2020, 5, 1519–1531. [Google Scholar] [CrossRef]
- Dokuyucu, M.A.; Celik, E.; Bulut, H.; Baskonus, H.M. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus 2018, 133, 1–6. [Google Scholar] [CrossRef]
- Uçar, E.; Özdemir, N.; Altun, E. Fractional order model of immune cells influenced by cancer cells. Math. Model. Nat. Phenom. 2019, 14, 308. [Google Scholar] [CrossRef]
- Uçar, E.; Özdemir, N. A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives. Eur. Phys. J. Plus 2021, 136, 1–17. [Google Scholar] [CrossRef]
- Naim, M.; Yassine, S.; Nwar, Z. Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption. Math. Model. Numer. Simul. Appl. 2022, 2, 164–176. [Google Scholar] [CrossRef]
- Farayola, M.F.; Shafie, S.; Siam, F.M.; Khan, I. Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative. Comput. Methods Programs Biomed. 2020, 188, 105306. [Google Scholar] [CrossRef]
- Sheergojri, A.R.; Iqbal, P.; Agarwal, P.; Ozdemir, N. Uncertainty-based Gompertz growth model for tumor population and its numerical analysis. Int. J. Optim. Control Theor. Appl. 2022, 12, 137–150. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef]
- Balzotti, C.; D’Ovidio, M.; Loret, P. Fractional SIS epidemic models. Fractal Fract. 2020, 4, 44. [Google Scholar] [CrossRef]
- Traver, J.E.; Nuevo-Gallardo, C.; Tejado, I.; Fernández-Portales, J.; Ortega-Morán, J.F.; Pagador, J.B.; Vinagre, B.M. Cardiovascular Circulatory System and Left Carotid Model: A Fractional Approach to Disease Modeling. Fractal Fract. 2022, 6, 64. [Google Scholar] [CrossRef]
- Lai, X.; Friedman, A. Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS ONE 2017, 12, e0178479. [Google Scholar] [CrossRef]
- Lai, X.; Friedman, A. Mathematical modeling of cancer treatment with radiation and PD-L1 inhibitor. Sci. China Math. 2020, 63, 465–484. [Google Scholar] [CrossRef]
- Bonyah, E.; Zarin, R.; Wati, F. Mathematical modeling of cancer and hepatitis co-dynamics with non-local and non-singular kernel. Commun. Math. Biol. Neurosci. 2020, 2020, 91. [Google Scholar]
- Ucar, E.; Ozdemir, N.; Altun, E. Qualitative analysis and numerical simulations of new model describing cancer. J. Comput. Appl. 2023, 422, 114899. [Google Scholar] [CrossRef]
Parameter | Meaning | Value (Unit) |
---|---|---|
a | the initial density of CD8+T cells | |
b | the reproduction rate of CD8+T | |
c | the death ratio of CD8+T cells | () |
p | the carrying capacity of CD8+T cells | 1 |
d | the tumor growth ratio | |
q | the carrying capacity of cancer cells | 1 |
e | the death ratio of cancer cells under the effect of IL-10 | |
z | the death ratio of cancer cells under the effect of anti-PD-L1 | 1 |
f | the decay rates of IL-10 | |
the decay rates of anti-PD-L1 | () |
CD8+T Cells | Tumor Cells | IL-10 | Anti-PD-L1 | |
---|---|---|---|---|
1 | ||||
CD8+T Cells | Tumor Cells | IL-10 | Anti-PD-L1 | |
---|---|---|---|---|
1 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uçar, E.; Özdemir, N. New Fractional Cancer Mathematical Model via IL-10 Cytokine and Anti-PD-L1 Inhibitor. Fractal Fract. 2023, 7, 151. https://doi.org/10.3390/fractalfract7020151
Uçar E, Özdemir N. New Fractional Cancer Mathematical Model via IL-10 Cytokine and Anti-PD-L1 Inhibitor. Fractal and Fractional. 2023; 7(2):151. https://doi.org/10.3390/fractalfract7020151
Chicago/Turabian StyleUçar, Esmehan, and Necati Özdemir. 2023. "New Fractional Cancer Mathematical Model via IL-10 Cytokine and Anti-PD-L1 Inhibitor" Fractal and Fractional 7, no. 2: 151. https://doi.org/10.3390/fractalfract7020151
APA StyleUçar, E., & Özdemir, N. (2023). New Fractional Cancer Mathematical Model via IL-10 Cytokine and Anti-PD-L1 Inhibitor. Fractal and Fractional, 7(2), 151. https://doi.org/10.3390/fractalfract7020151