On Fuzzy Spiral-like Functions Associated with the Family of Linear Operators
Abstract
:1. Introduction
- (i)
- If and , then , and .
- (ii)
- If , , and , then and reduce to and , respectively, as shown by Shah et al. [10].
2. Main Results
2.1. Inclusion Results
2.2. The Integral Preserving Property
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential Subordinations Theory and Applications; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 3, 55–64. [Google Scholar]
- Lupas, A.A.; Cãtas, A. Fuzzy Differential Subordination of the Atangana–Baleanu Fractional Integral. Symmetry 2021, 13, 1929. [Google Scholar] [CrossRef]
- Oros, G.I. Fuzzy Differential Subordinations Obtained Using a Hypergeometric Integral Operator. Mathematics 2021, 20, 2539. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Briot-Bouquet fuzzy differential subordination. Anal. Univ. Oradea Fasc. Math. 2012, 19, 83–87. [Google Scholar]
- Oros, G.I. Univalence criteria for analytic functions obtained using fuzzy differential subordinations. Turk. J. Math. 2022, 46, 1478–1491. [Google Scholar] [CrossRef]
- Shah, S.A.; Ali, E.E.; Maitlo, A.A.; Abdeljawad, T.; Albalahi, A.M. Inclusion results for the class of fuzzy α-convex functions. AIMS Math. 2022, 8, 1375–1383. [Google Scholar] [CrossRef]
- Gal, S.G.; Ban, A.I. Elemente de matematică fuzzy. Romania. Ed. Universităţii din Oradea 1996. (In Romanian) [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef]
- Cho, N.E.; Kim, J.A. Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation. Comp. Math. Appl. 2006, 52, 323–330. [Google Scholar] [CrossRef]
- Lupas, A.A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Lupas, A.A.; Oros, G. On special fuzzy differential subordinations using Salagean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. An. Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Wanas, A.K.; Majeed, A.H. Fuzzy differential subordination properties of analytic functions involving generalized differential operator. Sci. Int. 2018, 30, 297–302. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Lupas, A.A. Fuzzy differential subordinations associated with an integral operator. An. Univ. Oradea Fasc. Mat. 2020, 27, 133–140. [Google Scholar]
- Lupas, A.A.; Oros, G.I. New Applications of Salagean and Ruscheweyh Operators for Obtaining Fuzzy Differential Subordinations. Mathematics 2021, 9, 2000. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Oros, G.I. Fuzzy differential subordinations connected with the linear operator. Math. Bohem. 2021, 146, 397–406. [Google Scholar] [CrossRef]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jan, R.; Jan, A.; Deebani, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 053130. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, A.M. A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform. Symmetry 2021, 13, 1254. [Google Scholar] [CrossRef]
- Lupas, A.A. Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations. Mathematics 2021, 9, 2601. [Google Scholar] [CrossRef]
- Oros, G.I.; Dzitac, S. Applications of Subordination Chains and Fractional Integral in Fuzzy Differential Subordinations. Mathematics 2022, 10, 1690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzam, A.F.; Shah, S.A.; Cătaș, A.; Cotîrlă, L.-I. On Fuzzy Spiral-like Functions Associated with the Family of Linear Operators. Fractal Fract. 2023, 7, 145. https://doi.org/10.3390/fractalfract7020145
Azzam AF, Shah SA, Cătaș A, Cotîrlă L-I. On Fuzzy Spiral-like Functions Associated with the Family of Linear Operators. Fractal and Fractional. 2023; 7(2):145. https://doi.org/10.3390/fractalfract7020145
Chicago/Turabian StyleAzzam, Abdel Fatah, Shujaat Ali Shah, Adriana Cătaș, and Luminiţa-Ioana Cotîrlă. 2023. "On Fuzzy Spiral-like Functions Associated with the Family of Linear Operators" Fractal and Fractional 7, no. 2: 145. https://doi.org/10.3390/fractalfract7020145
APA StyleAzzam, A. F., Shah, S. A., Cătaș, A., & Cotîrlă, L. -I. (2023). On Fuzzy Spiral-like Functions Associated with the Family of Linear Operators. Fractal and Fractional, 7(2), 145. https://doi.org/10.3390/fractalfract7020145