Fractional Probability Theory of Arbitrary Order
Abstract
:1. Introduction
2. Preliminaries
2.1. Riemann–Liouville Fractional Integrals
2.2. Riemann–Liouville Fractional Derivatives
2.3. Fundamental Theorems of Fractional Calculus
2.4. Caputo Fractional Derivatives and Fundamental Theorems
3. From Fractional Probability Density to Fractional Probability Space
3.1. Preliminaries: Characteristic Properties of Cumulative Distribution Function
- I.
- Right-continuity: is a continuous function on the right and has a limit on the left at each .
- II.
- Monotonicity: is a non-decreasing function. If , then .
- III.
- The behavior at interval boundaries:
3.2. Fractional Probability Density Function
3.3. Fractional Cumulative Distribution Function
4. Examples of Fractional Distributions on Interval
4.1. Fractional Distributions of Power-Law and Uniform Types
4.2. Fractional Distribution of Two-Parameter Power-Law Type
4.3. Fractional Distributions of Confluent Hypergeometric Kummer and Exponential Types
4.4. Fractional Distribution of Gauss Hypergeometric Type
4.5. Fractional Distribution of Bessel Type
4.6. Fractional Distribution of Two-Parameter Mittag–Leffler Type
4.7. Fractional Distribution of Prabhakar Type
5. Fractional Mean (Average) Values
5.1. Definition of Fractional Average (Mean) Values
5.2. Fractional Average Values for Fractional Distributions of Power-Law and Uniform Types
5.3. Fractional Average Values for Fractional Distribution of Two-Parameter Power-Law Type
5.4. Fractional Average Values for Fractional Distribution of Confluent Hypergeometric Kummer and Exponential Types
6. Conclusions
- The definition of the fractional probability density function (fractional PDF) was proposed. The basic properties of the fractional PDF were proven.
- The definition of the fractional cumulative distribution function (fractional CDF) was suggested, and the basic properties of these functions were also proven.
- Using the properties of the fractional CDF, two theorems, which prove the existence of the probability space of the fractional probability of arbitrary order , were suggested.
- Examples of the distributions of the fractional probability on finite intervals were proposed. The following distributions of the fractional probability (DFP, fractional distributions) were considered: (a) The DFP of the power-law type; (b) The DFP of the uniform type; (c) The DFP of the two-parameter power-law type; (d) The DFP of the confluent hypergeometric Kummer type; (e) The DFP of the exponential type; (f) The DFP of the Gauss hypergeometric type; (g) The DFP of the Bessel type; (h) The DFP of the two-parameter Mittag–Leffler type; (i) The DFP of the Prabhakar type.
- Fractional average (mean) values were defined, and examples of the calculations were suggested.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach: New York, NY, USA, 1993; ISBN 9782881248641. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0125588409. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0444518323. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y.; Tarasov, V.E.; Petráš, I. (Eds.) Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y.; Tarasov, V.E.; Petráš, I. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional derivatives and the fundamental theorem of fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 939–966. [Google Scholar] [CrossRef]
- Letnikov, A.V. On the historical development of the theory of differentiation with arbitrary index. Sb. Math. 1868, 3, 85–112. [Google Scholar]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Tenreiro Machado, J.A.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Galhano, A.M.; Trujillo, J.J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013, 16, 479–500. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Kiryakova, V. The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 307–336. [Google Scholar] [CrossRef]
- Valerio, D.J.; Tenreiro Machado, J.A.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Fractional calculus in Russia at the end of XIX century. Mathematics 2021, 9, 1736. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010; 505p. [Google Scholar] [CrossRef] [Green Version]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Luo, A.C.J.; Afraimovich, V.S. Long-Range Interaction, Stochasticity and Fractional Dynamics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; 1 Background and Theory. Vol 2. Application; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; World Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014; 336p. [Google Scholar]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications; Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 306p, ISBN 978-3-11-057088-5. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications; Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin, Germany, 2019; 319p, ISBN 978-3-11-057089-2. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 3848. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional generalization of Liouville equations. Chaos 2004, 14, 123–127. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Liouville and BBGKI equations. J. Phys. Conf. Ser. 2005, 7, 17–33. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional systems and fractional Bogoliubov hierarchy equations. Phys. Rev. E 2005, 71, 011102. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional statistical mechanics. Chaos 2006, 16, 033108. [Google Scholar] [CrossRef]
- Tarasov, V.E. Liouville and Bogoliubov equations with fractional derivatives. Mod. Phys. Lett. B 2007, 21, 237–248. [Google Scholar] [CrossRef]
- Tarasov, V.E. Power-law spatial dispersion from fractional Liouville equation. Phys. Plasmas 2013, 20, 102110. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal quantum system with fractal distribution of states. Phys. A Stat. Mech. Its Appl. 2021, 574, 126009. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Vlasov, A.A. Many-Particle Theory and Its Application to Plasma; Gordon and Breach: New York, NY, USA, 1961; ISBN 0-677-20330-6/978-0-677-20330-0; Available online: https://archive.org/details/ManyParticleTheory/page/n5/mode/2up (accessed on 6 December 2022).
- Vlasov, A.A. Non-Local Statistical Mechanics; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Vlasov, A.A. Non-Local Statistical Mechanics, 2nd ed.; Librikom, Editorial URSS: Moscow, Russia, 2017; ISBN 978-5-397-05991-6. [Google Scholar]
- Vlasov, A.A. Statistical Distribution Functions; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Vlasov, A.A. Statistical Distribution Functions, 2nd ed.; Librikom, Editorial URSS: Moscow, Russia, 2014; ISBN 978-5-9710-1164-4. [Google Scholar]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Self-similar anomalous diffusion and Levy-stable laws. Physics-Uspekhi 2003, 46, 821–849. [Google Scholar] [CrossRef]
- Tarasov, V.E. Non-Markovian dynamics of open quantum system with memory. Ann. Phys. 2021, 434, 168667. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-Markovian quantum dynamics. Entropy 2021, 23, 1006. [Google Scholar] [CrossRef] [PubMed]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives of arbitrary order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Luchko, Y. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Luchko, Y. Special functions of fractional calculus in the form of convolution series and their applications. Mathematics 2021, 9, 2132. [Google Scholar] [CrossRef]
- Luchko, Y. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 2022, 25, 207–228. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann–Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Luchko, Y. The 1st level general fractional derivatives and some of their properties. J. Math. Sci. 2022. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Hanna, L.A.M.; Luchko, Y. Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 2022, 10, 1590. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equ. 2022, 319, 312–324. [Google Scholar] [CrossRef]
- Diethelm, K.; Kiryakova, V.; Luchko, Y.; Tenreiro Machado, J.A.; Tarasov, V.E. Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Trujillo, J.J.; Rivero, M.; Bonilla, D. On a Riemann–Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 1999, 231, 255–265. [Google Scholar] [CrossRef]
- Tarasov, V.E. Generalized memory: Fractional calculus approach. Fractal Fract. 2018, 2, 23. [Google Scholar] [CrossRef]
- Shiryaev, A.N. Probability-1; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Borovkov, A.A. Probability Theory; Translation from the 5th edn. of the Russian Language Edition; Springer: London, UK, 2013. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef]
- Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef]
- Mainardi, F.; Garrappa, R. On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 2015, 293, 70–80. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional vector calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Prado, H.; Rivero, M.; Trujillo, J.J.; Velasco, M.P. New results from old investigation: A note on fractional m-dimensional differential operators. The fractional Laplacian. Fract. Calc. Appl. Anal. 2015, 18, 290–307. [Google Scholar] [CrossRef]
- Riesz, M. L’intégrale de Riemann–Liouville et le probléme de Cauchy. Acta Math. 1949, 81, 1–222. [Google Scholar] [CrossRef]
- Riesz, M. Marcel Riesz Collected Papers; Lars, G., Hormander, L., Eds.; Serie: Springer Collected Works in Mathematics; Springer: Berlin/Heidelberg, Germany, 1988; ISBN 978-3-642-34603-3. Available online: https://www.springer.com/gp/book/9783642346033 (accessed on 6 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. Fractional Probability Theory of Arbitrary Order. Fractal Fract. 2023, 7, 137. https://doi.org/10.3390/fractalfract7020137
Tarasov VE. Fractional Probability Theory of Arbitrary Order. Fractal and Fractional. 2023; 7(2):137. https://doi.org/10.3390/fractalfract7020137
Chicago/Turabian StyleTarasov, Vasily E. 2023. "Fractional Probability Theory of Arbitrary Order" Fractal and Fractional 7, no. 2: 137. https://doi.org/10.3390/fractalfract7020137