Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator
Abstract
:1. Introduction and Definitions
2. Faber Polynomial Expansion Approach
3. Set of Lemmas
4. Main Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Cluni, J. Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent function. Study. Univ. Babes Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Xu, Q.H.; Xiao, H.G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric biunivalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Bulut, S. Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turk. J. Math. 2016, 40, 1386–1397. [Google Scholar] [CrossRef]
- Breaz, D.; Cotirla, L.I. The study of the new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. Int. J. Math. 2014, 25, 1450064. [Google Scholar] [CrossRef]
- Hamzat, J.O. Some properties of a new subclass of m-Fold symmetric bi-Bazilevic functions associated with modified sigmoid functions. Tbilisi Math. J. 2021, 14, 107–118. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oladipo, A.T.; Fagbemiro, O. Coefficient bounds for certain new subclass of m-fold symmetric bi-univalent functions associated with conic domains. Trends Sci. Tech. J. 2018, 3, 807–813. [Google Scholar]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Atshan, W.G.; Rahman, I.A.R.; Alb Lupas, A. Some results of new subclasses for bi-univalent functions using Quasi-subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, A.M. A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform. Symmetry 2021, 13, 1254. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Lefler-confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci. 2020, 44, 3605–3614. [Google Scholar] [CrossRef]
- Cho, N.E.; Aouf, M.K.; Srivastava, R. The principle of differential subordination and its application to analytic and p-valent functions defined by a generalized fractional differintegral operator. Symmetry 2019, 11, 1083. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris Ser. I 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Wang, Z.G.; Bulut, S. A note on the coefficient estimates of bi-close-to-convex functions. C. R. Acad. Sci. Paris Ser. I 2017, 355, 876–880. [Google Scholar] [CrossRef]
- Faber, G. Uber polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach Conjecture: AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA, 1999; Volume 12. [Google Scholar]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456. [Google Scholar]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Acad. Sci. Paris Ser. I 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Acad. Sci. Paris Ser. I 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Khan, N.; Tchier, F.; Xin, Q.; Malik, S.N.; Khan, S. Coefficient bounds for a family of m-fold symmetric bi-univalent functions. Axioms 2023, 12, 317. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar] [CrossRef]
- Bulut, S. A new comprehensive subclass of analytic bi-close-to-convex functions. Turk. J. Math. 2019, 43, 1414–1424. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient estimates for functions associated with vertical strip domain. Commun. Korean Math. Soc. 2022, 37, 537–549. [Google Scholar]
- Guney, H.O.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Result. Math. 2019, 74, 1–13. [Google Scholar] [CrossRef]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Groups and Symmetries: From Neolithic Scots to John McKay; American Mathematical Society: Montreal, QC, Canada, 2007. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Gottingen, Germany, 1975. [Google Scholar]
- Bulut, S. Coefficient estimates for Libera type bi-close-to-convex functions. Math. Slovaca 2021, 71, 1401–1410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfiq, F.M.O.; Tchier, F.; Cotîrlă, L.-I. Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator. Fractal Fract. 2023, 7, 883. https://doi.org/10.3390/fractalfract7120883
Tawfiq FMO, Tchier F, Cotîrlă L-I. Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator. Fractal and Fractional. 2023; 7(12):883. https://doi.org/10.3390/fractalfract7120883
Chicago/Turabian StyleTawfiq, Ferdous M. O., Fairouz Tchier, and Luminita-Ioana Cotîrlă. 2023. "Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator" Fractal and Fractional 7, no. 12: 883. https://doi.org/10.3390/fractalfract7120883
APA StyleTawfiq, F. M. O., Tchier, F., & Cotîrlă, L. -I. (2023). Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator. Fractal and Fractional, 7(12), 883. https://doi.org/10.3390/fractalfract7120883