Next Article in Journal
Convergence Rate of the Diffused Split-Step Truncated Euler–Maruyama Method for Stochastic Pantograph Models with Lévy Leaps
Next Article in Special Issue
Properties and Applications of Symmetric Quantum Calculus
Previous Article in Journal
Pricing European Options under a Fuzzy Mixed Weighted Fractional Brownian Motion Model with Jumps
Previous Article in Special Issue
Some New Fractional Inequalities for Coordinated Convexity over Convex Set Pertaining to Fuzzy-Number-Valued Settings Governed by Fractional Integrals
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Maclaurin-Type Integral Inequalities for GA-Convex Functions Involving Confluent Hypergeometric Function via Hadamard Fractional Integrals

1
Laboratory of Analysis and Control of Differential Equations “ACED”, Facuty MISM, Department of Mathematics, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
2
Department of Mathematics, Faculty of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
3
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(12), 860; https://doi.org/10.3390/fractalfract7120860
Submission received: 26 October 2023 / Revised: 24 November 2023 / Accepted: 30 November 2023 / Published: 2 December 2023
(This article belongs to the Special Issue Mathematical Inequalities in Fractional Calculus and Applications)

Abstract

:
In this manuscript, by using a new identity, we establish some new Maclaurin-type inequalities for functions whose modulus of the first derivatives are G A -convex functions via Hadamard fractional integrals.

1. Introduction

It is well known that convexity plays an important and central role in many fields, such as economics, finance, optimization, and game theory. Due to its various applications, this concept has been extended and generalized in several directions.
This concept is closely related to integral inequalities. The literature in this context is rich. One can easily find papers that deal with different types of inequalities via different kinds of convexity.
Over the past few years, numerous scholars have investigated the error estimates associated with specific quadrature formulas. Their aim has been to develop new refinements, generalizations, and variants. For additional details, readers are encouraged to consult references [1,2,3,4,5,6,7,8,9,10] for classical inequalities, and [11,12,13,14] for fractional inequalities.
In [15], İşcan gave the analogue fractional of Hermite–Hadamard inequality for G A -convex functions as follows:
f a b Γ α + 1 2 ln b ln a α H J a + α f b + H J b α f a f a + f b 2 ,
where α > 0 and 0 < a < b and f is an integrable and G A -convex function on a , b .
Qi and Xi [16] have derived specific Simpson-type inequalities for G A - ε -convex functions. Within the outcomes obtained for differentiable function f: a , b R , with 0 < a < b and f L a , b and f q is G A - ε -convex, we have
f a + 4 f a b + f b 6 1 ln b ln a b a f u d u u ln b ln a 4 M 1 1 1 q a , b M 1 a , b M 2 a , b f a q + M 2 a , b f b q + ε M 1 a , b 1 q + M 1 1 1 q b , a M 2 b , a f a q + M 1 b , a M 2 b , a f b q + ε M 1 b , a 1 q ,
where q 1 ,
M 1 x , y = 2 x 5 6 L x 1 6 , y 1 6 + x 1 2 2 y 1 2 x 1 2 2 x 1 2 y 1 6 L x 1 3 , y 1 3 3 ln y ln x
and
M 1 x , y = 2 x 1 2 4 y 1 6 L x 1 3 , y 1 3 + y 1 2 ln y ln x 2 x 1 3 L x 1 6 , y 1 6 5 y 1 2 + 2 x 1 3 y 1 6 + x 1 2 3 ln y ln x 2 ,
with
L x , y = x y ln x ln y if x y x if x = y .
Motivated by the above results, we propose in this work to study one of the open three-point Newton–Cotes formulas called Maclaurin inequality, which can be declared as follows:
1 8 3 f 5 a + b 6 + 2 f a + b 2 + 3 f a + 5 b 6 1 b a a b f u d u 7 τ υ 4 51840 f 4 b a 4 ,
where f is four times continuously differentiable function on a , b , and f 4 = sup x a , b f 4 x , (see [17]).
For this, we first prove a new identity involving Hadamard fractional integrals. On the basis of this identity, we establish some new Maclaurin-type inequalities for functions whose modulus of the first derivatives are G A -convex.

2. Preliminaries

This section recalls some known definitions. We denote by R the set of real numbers, and by R + the set of non-negative real numbers.
Definition 1
([18]). Let I be a subintervals of 0 , + . A function f: I R + is said to be G A -convex on I, if
f x t y 1 t t f x + 1 t f y
holds for all x , y I and t [ 0 , 1 ] .
Definition 2
([19]). The integral representation of the confluent hypergeometric function is given by
1 F 1 a ; b ; z = 1 B a , b a 1 0 t a 1 1 t b a 1 e z t d t ,
where R b > R a > 0 and B is the beta function.
Definition 3
([20]). The integral representation of the incomplete confluent hypergeometric function is given by
1 F 1 a , b ; y , z = 1 B a , b a y 0 u a 1 1 u b a 1 e z u d u = y a B a , b a 1 0 u a 1 1 u y b a 1 e z u y d u ,
where R b > R a > 0 and B is the Beta function.
Definition 4
([21]). The left-sided and right-sided Hadamard fractional integrals of order α R + of function f ( x ) are defined by
H J a + α f x = 1 Γ α x a ln x ln u α 1 f u d u u , 0 < a < x b ,
and
H J b α f x = 1 Γ α b x ln u ln x α 1 f u d u u , 0 < a x < b .
Lemma 1
([22]). For any 0 a < b in R , and a fixed p 1 , we have
b a p b p a p .

3. Auxiliary Results

We provide certain lemmas in this section that help with the computations and are utilized in the following section. The following lemma is crucial to establish our main results
Lemma 2.
Let f: [ a , b ] R be a differentiable mapping on a , b with 0 < a < b . Assume that f L a , b . Then, the following equality for fractional integrals holds:
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ = ln b ln a 9 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 f a 6 ϰ 6 b ϰ 6 d ϰ 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ + 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 d ϰ 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 f a 1 ϰ 6 b 5 + ϰ 6 d ϰ
where α > 0 and
Υ = H J a 5 6 b 1 6 α f a + H J a 1 6 b 5 6 + α f b + 1 2 α 1 H J a 5 6 b 1 6 + α f a 1 2 b 1 2 + H J a 1 6 b 5 6 α f a 1 2 b 1 2 .
Proof. 
Let
I = I 1 I 2 + I 3 I 4 ,
where
I 1 = 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 f a 6 ϰ 6 b ϰ 6 d ϰ , I 2 = 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ , I 3 = 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 d ϰ
and
I 4 = 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 f a 1 ϰ 6 b 5 + ϰ 6 d ϰ ,
Integrating by parts I 1 , we have
I 1 = 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 f a 6 ϰ 6 b ϰ 6 d ϰ = 6 ϰ α 4 ln b ln a f a 6 ϰ 6 b ϰ 6 t = 0 t = 1 6 α 4 ln b ln a 1 0 ϰ α 1 f a 6 ϰ 6 b ϰ 6 d ϰ = 3 2 ln b ln a f a 5 6 b 1 6 6 α + 1 α 4 ln b ln a α + 1 a 5 6 b 1 6 a ln u ln a α 1 f u d u u = 3 2 ln b ln a f a 5 6 b 1 6 6 α + 1 Γ α + 1 4 ln b ln a α + 1 H J a 5 6 b 1 6 α f a .
Similarly, we have
I 2 = 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ = 3 ln b ln a 1 ϰ α + 3 8 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 t = 0 t = 1 + 3 α ln b ln a 1 0 1 ϰ α 1 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ = 9 8 ln b ln a f a 1 2 b 1 2 15 8 ln b ln a f a 5 6 b 1 6 + 3 α + 1 α ln b ln a α + 1 a 1 2 b 1 2 a 5 6 b 1 6 ln a 1 2 b 1 2 ln u α 1 f u d u u = 9 8 ln b ln a f a 1 2 b 1 2 15 8 ln b ln a f a 5 6 b 1 6 + 3 α + 1 Γ α + 1 ln b ln a α + 1 H J a 5 6 b 1 6 + α f a 1 2 b 1 2 ,
I 3 = 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 d ϰ = 3 ln b ln a ϰ α 3 8 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 t = 0 t = 1 3 α ln b ln a 1 0 ϰ α 1 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ = 15 8 ln b ln a f a 1 6 b 5 6 + 9 8 ln b ln a f a 1 2 b 1 2 3 α + 1 α ln b ln a α + 1 a 1 6 b 5 2 a 1 2 b 1 2 ln u ln a 5 6 b 1 6 α 1 f u d u u = 15 8 ln b ln a f a 1 6 b 5 6 + 9 8 ln b ln a f a 1 2 b 1 2 3 α + 1 Γ α + 1 ln b ln a α + 1 H J a 1 6 b 5 6 α f a 1 2 b 1 2
I 4 = 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 f a 1 ϰ 6 b 5 + ϰ 6 d ϰ = 3 2 ln b ln a 1 ϰ α f a 1 ϰ 6 b 5 + ϰ 6 t = 0 t = 1 + 3 α 2 ln b ln a 1 0 1 ϰ α 1 f a 1 ϰ 6 b 5 + ϰ 6 d ϰ = 6 4 ln b ln a f a 1 6 b 5 6 + 6 α + 1 α 4 ln b ln a α + 1 b a 1 6 b 5 6 ln b ln u α 1 f u d u u = 6 4 ln b ln a f a 1 6 b 5 6 + 6 α + 1 Γ α + 1 4 ln b ln a α + 1 H J a 1 6 b 5 6 + α f b .
Using (3)–(6) in (2), and then multiplying the resulting equality by ln b ln a 9 , we obtain the desired result. □
In order for the paper to be well organized, we calculated the resulting integrals separately, so that there is no confusion.
Lemma 3.
Let λ and η be two positive numbers. Then, the following equality holds:
I 1 λ , η = λ 0 e η ϰ d ϰ = 1 η e η λ 1
and
I 2 λ , η = λ 0 ϰ e η ϰ d ϰ = 1 η λ e η λ 1 η 2 e η λ 1 .
Proof. 
By computing directly, we have
λ 0 e η ϰ d ϰ = 1 η e η ϰ ϰ = 0 ϰ = λ = 1 η e η λ 1 .
By using the integration by parts, we have
λ 0 ϰ e η ϰ d ϰ = 1 η ϰ e η ϰ ϰ = 0 ϰ = λ λ 0 1 η e η ϰ d ϰ = 1 η λ e η λ 1 η 2 e η ϰ ϰ = 0 ϰ = λ = 1 η λ e η λ 1 η 2 e η λ 1 .
The proof is completed. □
Lemma 4.
Let α and θ be two positive numbers. Then, the following equality holds:
ϑ 1 α , θ = 1 0 ϰ α 1 1 6 ϰ θ ϰ 6 d ϰ = 6 α + 1 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln θ α + 1 α + 2 .
Proof. 
By computing directly, we have
1 0 ϰ α 1 1 6 ϰ θ ϰ 6 d ϰ = 1 0 ϰ α 1 1 6 ϰ e 1 6 ϰ ln θ d ϰ = 6 α + 1 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln θ α + 1 α + 2 .
The proof is completed. □
Lemma 5.
Let α and θ be two positive numbers. Then, the following equality holds:
1 0 ϰ α 3 8 3 + 2 ϰ θ ϰ 3 d ϰ = μ 1 α , θ + μ 2 α , θ .
Proof. 
Clearly, we have
1 0 ϰ α 3 8 3 + 2 ϰ θ ϰ 3 d ϰ = 3 8 1 α 0 3 8 ϰ α 3 + 2 ϰ θ ϰ 3 d ϰ + 1 3 8 1 α ϰ α 3 8 3 + 2 ϰ θ ϰ 3 d ϰ .
By computing directly, we obtain
μ 1 α , θ = 3 8 1 α 0 3 8 ϰ α 3 + 2 ϰ θ ϰ 3 d ϰ = 1 8 3 8 1 α 0 9 + 6 ϰ 24 ϰ α 16 ϰ α + 1 e ϰ 3 ln θ d ϰ = 9 8 3 8 1 α 0 e ϰ 3 ln θ d ϰ + 6 8 3 8 1 α 0 ϰ e ϰ 3 ln θ d ϰ 3 3 8 1 α 0 ϰ α e ϰ 3 ln θ d ϰ 2 3 8 1 α 0 ϰ α + 1 e ϰ 3 ln θ d ϰ = 9 8 I 1 3 8 1 α , 1 3 ln θ + 6 8 I 2 3 8 1 α , 1 3 ln θ 3 . 1 F 1 α + 1 , α + 2 ; 3 8 1 α , 1 3 ln θ α + 1 2 . 1 F 1 α + 2 , α + 3 ; 3 8 1 α , 1 3 ln θ α + 2 .
On the other hand, we have
μ 2 α , θ = 1 3 8 1 α ϰ α 3 8 3 + 2 ϰ θ ϰ 3 d ϰ = θ 1 3 8 1 3 8 1 α 0 40 1 ϰ α 16 ϰ 1 ϰ α 15 + 6 ϰ e ϰ 3 ln θ d ϰ = 5 θ 1 3 1 3 8 1 α 0 1 ϰ α e ϰ 3 ln θ d ϰ 2 θ 1 3 1 3 8 1 α 0 ϰ 1 ϰ α e ϰ 3 ln θ d ϰ 15 θ 1 3 8 1 3 8 1 α 0 e ϰ 3 ln θ d ϰ + 3 θ 1 3 4 1 3 8 1 α 0 ϰ e ϰ 3 ln θ d ϰ = 5 θ 1 3 1 F 1 1 , α + 2 ; 1 3 8 1 α , 1 3 ln θ α + 1 2 θ 1 3 1 F 1 2 , α + 3 ; 1 3 8 1 α , 1 3 ln θ α + 1 α + 2 15 θ 1 3 8 I 1 1 3 8 1 α , 1 3 ln θ + 3 θ 1 3 4 I 2 1 3 8 1 α , 1 3 ln θ .
Using (12) and (13) in (11), we obtain the desired result. The proof is completed. □
Lemma 6.
Let α and θ be two positive numbers. Then, the following equality holds:
1 0 ϰ α 3 8 3 2 ϰ θ ϰ 3 d ϰ = μ 3 α , θ + μ 4 α , θ .
Proof. 
Clearly, we have
1 0 ϰ α 3 8 3 2 ϰ θ ϰ 3 d ϰ = 3 8 1 α 0 3 8 ϰ α 3 2 ϰ θ ϰ 3 d ϰ + 1 3 8 1 α ϰ α 3 8 3 2 ϰ θ ϰ 3 d ϰ .
By computing directly, we obtain
μ 3 α , θ = 3 8 1 α 0 3 8 ϰ α 3 2 ϰ θ ϰ 3 d ϰ = 1 8 3 8 1 α 0 9 6 ϰ 24 ϰ α + 16 ϰ α + 1 e ϰ 3 ln θ d ϰ = 9 8 3 8 1 α 0 e ϰ 3 ln θ d ϰ 3 4 3 8 1 α 0 ϰ e ϰ 3 ln θ d ϰ 3 3 8 1 α 0 ϰ α e ϰ 3 ln θ d ϰ + 2 3 8 1 α 0 ϰ α + 1 e ϰ 3 ln θ d ϰ = 9 8 I 1 3 8 1 α , 1 3 ln θ 3 4 I 2 3 8 1 α , 1 3 ln θ 3 1 F 1 α + 1 , α + 2 ; 3 8 1 α , 1 3 ln θ α + 1 + 2 1 F 1 α + 2 , α + 3 ; 3 8 1 α , 1 3 ln θ α + 2 .
And on the other hand, we have
μ 4 α , θ = 1 3 8 1 α ϰ α 3 8 3 2 ϰ θ ϰ 3 d ϰ = θ 1 3 8 1 3 8 1 α 0 8 1 ϰ α + 16 ϰ 1 ϰ α 3 6 ϰ e ϰ 3 ln θ d ϰ = θ 1 3 1 3 8 1 α 0 1 ϰ α e ϰ 3 ln θ d ϰ + 2 θ 1 3 1 3 8 1 α 0 ϰ 1 ϰ α e ϰ 3 ln θ d ϰ 3 θ 1 3 8 1 3 8 1 α 0 e ϰ 3 ln θ d ϰ 3 θ 1 3 4 1 3 8 1 α 0 ϰ e ϰ 3 ln θ d ϰ = θ 1 3 1 F 1 1 , α + 2 ; 1 3 8 1 α , 1 3 ln θ α + 1 + 2 θ 1 3 1 F 1 2 , α + 3 ; 1 3 8 1 α , 1 3 ln θ α + 1 α + 2 3 θ 1 3 8 I 1 1 3 8 1 α , 1 3 ln θ 3 θ 1 3 4 I 2 1 3 8 1 α , 1 3 ln θ .
Using (15) and (16) in (14), we obtain the desired result. The proof is completed. □
Lemma 7.
Let α and θ be two positive numbers. Then, the following equality holds:
ϑ 2 α , θ = 1 0 ϰ α + 1 θ ϰ 6 d ϰ = 1 F 1 α + 2 , α + 3 , 1 6 ln θ α + 2 .
Proof. 
By computing directly, we obtain
1 0 ϰ α + 1 θ ϰ 6 d ϰ = 1 0 ϰ α + 1 e ϰ 6 ln θ d ϰ = 1 F 1 α + 2 , α + 3 , 1 6 ln θ α + 2 .
The proof is completed. □
Lemma 8.
Let λ , β and η be a positive numbers. Then, the following equality holds
J 1 λ , η = λ 0 ϰ β θ η ϰ d ϰ = 1 F 1 β + 1 , β + 2 ; λ , η ln θ β + 1
and
J 2 λ , η = λ 0 1 ϰ β θ η ϰ d ϰ = 1 F 1 1 , β + 2 ; λ , η ln θ β + 1 .
Proof. 
By computing directly, we have
J 1 λ , η = λ 0 ϰ β θ η ϰ d ϰ = J 1 λ , η = λ 0 ϰ β e η ϰ ln θ d ϰ = 1 F 1 β + 1 , β + 2 ; λ , η ln θ β + 1 .
For J 2 λ , η , we have
J 2 λ , η = λ 0 1 ϰ β θ η ϰ d ϰ = λ 0 1 ϰ β e η ϰ ln θ d ϰ = 1 F 1 1 , β + 2 ; λ , η ln θ β + 1 .
The proof is completed. □
Lemma 9.
Let α and θ be two positive numbers. Then, the following equality holds:
Φ α , θ = 1 0 ϰ α 3 8 θ ϰ 3 d ϰ = 9 8 ln θ e 1 3 3 8 1 α ln θ + θ 1 3 e 1 3 1 3 8 1 α ln θ 1 θ 1 3 1 + θ 1 3 . 1 F 1 1 , α + 2 ; 1 3 8 1 α , 1 3 ln θ 1 1 F 1 α + 1 , α + 2 ; 3 8 1 α , 1 3 ln θ α + 1 .
Proof. 
By computing directly, we have
1 0 ϰ α 3 8 θ ϰ 3 d ϰ = 3 8 1 α 0 3 8 ϰ α θ ϰ 3 d ϰ + 1 3 8 1 α ϰ α 3 8 θ ϰ 3 d ϰ = 3 8 1 α 0 3 8 ϰ α θ ϰ 3 d ϰ + θ 1 3 1 3 8 1 α 0 1 ϰ α 3 8 θ ϰ 3 d ϰ = 3 8 3 8 1 α 0 e ϰ 3 ln θ d ϰ 3 8 1 α 0 ϰ α θ ϰ 3 d ϰ + θ 1 3 1 3 8 1 α 0 1 ϰ α θ ϰ 3 d ϰ 3 θ 1 3 8 1 3 8 1 α 0 e ϰ 3 ln θ d ϰ = 9 8 ln θ e 1 3 3 8 1 α ln θ 1 + 9 θ 1 3 8 ln θ e 1 3 1 3 8 1 α ln θ 1 1 + θ 1 3 . 1 F 1 1 , α + 2 ; 1 3 8 1 α , 1 3 ln θ 1 1 F 1 α + 1 , α + 2 ; 3 8 1 α , 1 3 ln θ α + 1 .
The proof is completed. □

4. Main Results

Our first result concerns functions whose absolute values of the first derivatives are G A -convex functions.
Theorem 1.
Let f: [ a , b ] R be a differentiable mapping on a , b with 0 < a < b , and f L 1 a , b . If f is G A -convex function, then the following inequality for fractional integrals holds:
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ ln b ln a 9 f a a × 6 α + 1 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln b a 4 α + 1 α + 2 + b × 1 F 1 α + 2 , α + 3 , 1 6 ln a b 24 α + 2 + a 1 2 b 1 2 6 μ 1 α , a b + μ 2 α , a b + μ 3 α , b a + μ 4 α , b a + f b a × 1 F 1 α + 2 , α + 3 , 1 6 ln b a 24 α + 2 + b × 6 α + 1 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln a b 4 α + 1 α + 2 + a 1 2 b 1 2 6 μ 1 α , b a + μ 2 α , b a + μ 3 α , a b + μ 4 α , a b ,
where α > 0 , Υ , μ 1 , μ 2 , μ 3 , μ 4 are defined by (1), (12), (13), (16), and (17), respectively, where 1 F 1 . ; . ; . and 1 F 1 . , . ; . , . are the confluent and the incomplete confluent hypergeometric functions, respectively.
Proof. 
From Lemma 2, and the properties of modulus and G A -convexity of f , we obtain
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ ln b ln a 9 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 f a 6 ϰ 6 b ϰ 6 d ϰ + 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ + 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 d ϰ + 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 f a 1 ϰ 6 b 5 + ϰ 6 d ϰ ln b ln a 9 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 6 ϰ 6 f a + ϰ 6 f b d ϰ + 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 5 2 ϰ 6 f a + 1 + 2 ϰ 6 f b d ϰ + 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 3 2 ϰ 6 f a + 3 + 2 ϰ 6 f b d ϰ + 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 1 ϰ 6 f a + 5 + ϰ 6 f b d ϰ = ln b ln a 9 f a 1 0 1 4 ϰ α 1 1 6 ϰ a 6 ϰ 6 b ϰ 6 d ϰ + f b 1 0 1 24 ϰ α + 1 a 6 ϰ 6 b ϰ 6 d ϰ + f a 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 5 2 ϰ 6 d ϰ + f b 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 1 + 2 ϰ 6 d ϰ + f a 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 3 2 ϰ 6 d ϰ + f b 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 3 + 2 ϰ 6 d ϰ + f a 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 1 ϰ 6 d ϰ + f b 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 5 + ϰ 6 d ϰ = ln b ln a 9 f a a 4 1 0 ϰ α 1 1 6 ϰ b a ϰ 6 d ϰ + a 1 2 b 1 2 6 1 0 ϰ α 3 8 3 + 2 ϰ a b ϰ 3 d ϰ + a 1 2 b 1 2 6 1 0 ϰ α 3 8 3 2 ϰ b a ϰ 3 d ϰ + b 24 1 0 ϰ α + 1 a b ϰ 6 d ϰ + f b a 24 1 0 ϰ α + 1 b a ϰ 6 d ϰ + a 1 2 b 1 2 6 1 0 ϰ α 3 8 3 2 ϰ a b ϰ 3 d ϰ + a 1 2 b 1 2 6 1 0 ϰ α 3 8 3 + 2 ϰ b a ϰ 3 d ϰ + b 4 1 0 ϰ α 1 1 6 ϰ a b ϰ 6 d ϰ = ln b ln a 9 f a a × 6 α + 1 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln b a 4 α + 1 α + 2 + b × 1 F 1 α + 2 , α + 3 , 1 6 ln a b 24 α + 2 + a 1 2 b 1 2 6 μ 1 α , a b + μ 2 α , a b + μ 3 α , b a + μ 4 α , b a + f b a × 1 F 1 α + 2 , α + 3 , 1 6 ln b a 24 α + 2 + b × 6 α + 1 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln a b 4 α + 1 α + 2 + a 1 2 b 1 2 6 μ 1 α , b a + μ 2 α , b a + μ 3 α , a b + μ 4 α , a b ,
which we have used. The proof is completed. □
The following result deals with the case where the absolute values of the first derivatives at a certain power q are G A -convex functions.
Theorem 2.
Let f: [ a , b ] R be a differentiable mapping on a , b with 0 < a < b , and f L 1 a , b . If f q is G A -convex function and q > 1 with 1 p + 1 q = 1 , then the following inequality for fractional integrals holds:
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ ln b ln a 9 a 4 1 F 1 p α + 1 , p α + 2 , p 6 ln b a p α + 1 1 p 11 f a q + f b q 12 1 q + a 1 2 b 1 2 2 f a q + f b q 3 1 q 3 p + 1 e p 3 3 8 1 α ln a b 1 8 p p ln a b 1 F 1 p α + 1 , p α + 2 ; 3 8 1 α , p 3 ln a b p α + 1 + a b p 3 1 F 1 1 , p α + 2 ; 1 3 8 1 α , p 3 ln b a p α + 1 3 p + 1 8 p p ln a b e p 3 1 3 8 1 α ln a b 1 1 p + a 1 2 b 1 2 f a q + 2 f b q 3 1 q 3 p + 1 e p 3 3 8 1 α ln b a 1 8 p p ln a b 1 F 1 p α + 1 , p α + 2 ; 3 8 1 α , p 3 ln b a p α + 1 + b a p 3 1 F 1 1 , p α + 2 ; 1 3 8 1 α , p 3 ln a b p α + 1 3 8 p 1 F 1 p α + 1 , p α + 2 ; 1 3 8 1 α , p 3 ln a b p α + 1 1 p + b 4 1 F 1 p α + 1 , p α + 2 , p 6 ln a b p α + 1 1 p f a q + 11 f b q 12 1 q ,
where α > 0 , Υ is given by (1), and 1 F 1 . ; . ; . and 1 F 1 . , . ; . , . are the confluent and the incomplete confluent hypergeometric functions, respectively.
Proof. 
From Lemma 2, the modulus, Hölder’s inequality, G A -convexity of f q , and Lemma 1, we have
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ ln b ln a 9 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 p d ϰ 1 p 1 0 f a 6 ϰ 6 b ϰ 6 q d ϰ 1 q + 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 p d ϰ 1 p 1 0 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 q d ϰ 1 q + 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 p d ϰ 1 p 1 0 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 q d ϰ 1 q + 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 p d ϰ 1 p 1 0 f a 1 ϰ 6 b 5 + ϰ 6 q d ϰ 1 q ln b ln a 9 a 4 1 0 ϰ p α b a p 6 ϰ d ϰ 1 p 1 0 6 ϰ 6 f a q + ϰ 6 f b q d ϰ 1 q + a 1 2 b 1 2 3 8 1 α 0 3 8 ϰ α p a b p 3 ϰ d ϰ + 1 3 8 1 α ϰ α 3 8 p a b p 3 ϰ d ϰ 1 p × 1 0 5 2 ϰ 6 f a q + 1 + 2 ϰ 6 f b q d ϰ 1 q + a 1 2 b 1 2 3 8 1 α 0 3 8 ϰ α p b a p 3 ϰ d ϰ + 1 3 8 1 α ϰ α 3 8 p b a p 3 ϰ d ϰ 1 p × 1 0 3 2 ϰ 6 f a q + 3 + 2 ϰ 6 f b q d ϰ 1 q + b 4 1 0 ϰ p α a b p 6 ϰ d ϰ 1 p 1 0 1 ϰ 6 f a q + 5 + ϰ 6 f b q d ϰ 1 q ln b ln a 9 a 4 1 0 ϰ p α 1 + 1 b a p 1 6 ϰ d ϰ 1 p f a q 1 0 6 ϰ 6 d ϰ + f b q 1 0 ϰ 6 d ϰ 1 q + a 1 2 b 1 2 3 8 1 α 0 3 8 p e p 3 ϰ ln a b ϰ p α a b p 3 ϰ d ϰ + a b p 3 1 3 8 1 α 0 1 ϰ p α b a p 3 ϰ 3 8 p e p 3 ϰ ln b a d ϰ 1 p × f a q 1 0 5 2 ϰ 6 d ϰ + f b q 1 0 1 + 2 ϰ 6 d ϰ 1 q + a 1 2 b 1 2 3 8 1 α 0 3 8 p e p 3 ϰ ln b a ϰ p α b a p 3 ϰ d ϰ + b a p 3 1 3 8 1 α 0 1 ϰ p α a b p 3 ϰ 3 8 p ϰ p α a b p 3 ϰ d ϰ 1 p × f a q 1 0 3 2 ϰ 6 d ϰ + f b q 1 0 3 + 2 ϰ 6 d ϰ 1 q + b 4 1 0 ϰ p α 1 + 1 a b p 1 6 ϰ d ϰ 1 p f a q 1 0 1 ϰ 6 d ϰ + f b q 1 0 5 + ϰ 6 d ϰ 1 q = ln b ln a 9 a 4 1 F 1 p α + 1 , p α + 2 , p 6 ln b a p α + 1 1 p 11 f a q + f b q 12 1 q + a 1 2 b 1 2 2 f a q + f b q 3 1 q 3 p + 1 e p 3 3 8 1 α ln a b 1 8 p p ln a b 1 F 1 p α + 1 , p α + 2 ; 3 8 1 α , p 3 ln a b p α + 1 + a b p 3 1 F 1 1 , p α + 2 ; 1 3 8 1 α , p 3 ln b a p α + 1 3 p + 1 8 p p ln a b e p 3 1 3 8 1 α ln a b 1 1 p + a 1 2 b 1 2 f a q + 2 f b q 3 1 q 3 p + 1 e p 3 3 8 1 α ln b a 1 8 p p ln a b 1 F 1 p α + 1 , p α + 2 ; 3 8 1 α , p 3 ln b a p α + 1 + b a p 3 1 F 1 1 , p α + 2 ; 1 3 8 1 α , p 3 ln a b p α + 1 3 8 p 1 F 1 p α + 1 , p α + 2 ; 1 3 8 1 α , p 3 ln a b p α + 1 1 p + b 4 1 F 1 p α + 1 , p α + 2 , p 6 ln a b p α + 1 1 p f a q + 11 f b q 12 1 q ,
The proof is completed. □
The following theorem represents a variation of Theorem 2.
Theorem 3.
Let f: [ a , b ] R be a differentiable mapping on a , b with 0 < a < b , and f L 1 a , b . If f q is G A -convex function and q 1 , then the following inequality for fractional integrals holds:
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ ln b ln a 9 a 4 1 F 1 α + 1 , α + 2 , 1 6 ln b a α + 1 1 1 q × 6 α + 2 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln b a f a q + α + 1 1 F 1 α + 2 , α + 3 , 1 6 ln b a f b q 6 α + 1 α + 2 1 q + a 1 2 b 1 2 Φ α , a b 1 1 q μ 1 α , a b + μ 2 α , a b f a q + μ 3 α , a b + μ 4 α , a b f b q 6 1 q + a 1 2 b 1 2 Φ α , b a 1 1 q μ 3 α , b a + μ 4 α , b a f a q + μ 1 α , b a + μ 2 α , b a f b q 6 1 q + b 4 1 F 1 α + 1 , α + 2 , 1 6 ln a b α + 1 1 1 q × α + 1 1 F 1 α + 2 , α + 3 , 1 6 ln a b f a q + 6 α + 2 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln a b f b q 6 α + 1 α + 2 1 q ,
where α > 0 , Υ , μ 1 , μ 2 , μ 3 , μ 4 , Φ are defined by (1), (12), (13), (16), (17) and (20), respectively, where 1 F 1 . ; . ; . and 1 F 1 . , . ; . , . are the confluent and the incomplete confluent hypergeometric functions, respectively.
Proof. 
From Lemma 2, the modulus, the power mean inequality, and the G A -convexity of f q , we have
1 8 3 f a 5 6 b 1 6 + 2 f a 1 2 b 1 2 + 3 f a 1 6 b 5 6 6 α 1 Γ α + 1 ln b ln a α Υ ln b ln a 9 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 d ϰ 1 1 q 1 0 1 4 ϰ α a 6 ϰ 6 b ϰ 6 f a 6 ϰ 6 b ϰ 6 q d ϰ 1 q + 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 d ϰ 1 1 q × 1 0 1 ϰ α 3 8 a 5 2 ϰ 6 b 1 + 2 ϰ 6 f a 5 2 ϰ 6 b 1 + 2 ϰ 6 q d ϰ 1 q + 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 d ϰ 1 1 q × 1 0 ϰ α 3 8 a 3 2 ϰ 6 b 3 + 2 ϰ 6 f a 3 2 ϰ 6 b 3 + 2 ϰ 6 q d ϰ 1 q + 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 d ϰ 1 1 q × 1 0 1 4 1 ϰ α a 1 ϰ 6 b 5 + ϰ 6 f a 1 ϰ 6 b 5 + ϰ 6 q d ϰ 1 q ln b ln a 9 a 4 1 0 ϰ α b a ϰ 6 d ϰ 1 1 q × f a q 1 0 ϰ α 1 ϰ 6 b a ϰ 6 d ϰ + 1 6 f b q 1 0 ϰ α + 1 b a ϰ 6 d ϰ 1 q + a 1 2 b 1 2 6 6 1 0 ϰ α 3 8 a b ϰ 3 d ϰ 1 1 q × f a q 1 0 ϰ α 3 8 3 + 2 ϰ a b ϰ 3 d ϰ + f b q 1 0 ϰ α 3 8 3 2 ϰ a b ϰ 3 d ϰ 1 q + a 1 2 b 1 2 6 6 1 0 ϰ α 3 8 b a ϰ 3 d ϰ 1 1 q × f a q 1 0 ϰ α 3 8 3 2 ϰ b a ϰ 3 d ϰ + f b q 1 0 ϰ α 3 8 3 + 2 ϰ b a ϰ 3 d ϰ 1 q + b 4 1 0 ϰ α a b ϰ 6 d ϰ 1 1 q × 1 6 f a q 1 0 ϰ α + 1 a b ϰ 6 d ϰ + f b q 1 0 ϰ α 1 1 6 ϰ a b ϰ 6 d ϰ 1 q = ln b ln a 9 a 4 1 F 1 α + 1 , α + 2 , 1 6 ln b a α + 1 1 1 q × 6 α + 2 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln b a f a q + α + 1 1 F 1 α + 2 , α + 3 , 1 6 ln b a f b q 6 α + 1 α + 2 1 q + a 1 2 b 1 2 Φ α , a b 1 1 q μ 1 α , a b + μ 2 α , a b f a q + μ 3 α , a b + μ 4 α , a b f b q 6 1 q + a 1 2 b 1 2 Φ α , b a 1 1 q μ 3 α , b a + μ 4 α , b a f a q + μ 1 α , b a + μ 2 α , b a f b q 6 1 q + b 4 1 F 1 α + 1 , α + 2 , 1 6 ln a b α + 1 1 1 q × α + 1 1 F 1 α + 2 , α + 3 , 1 6 ln a b f a q + 6 α + 2 . 1 F 1 α + 1 , α + 3 ; 1 6 , ln a b f b q 6 α + 1 α + 2 1 q ,
The proof is completed. □

5. Conclusions

This study deals with the fractional Newton–Cotes-type inequalities involving three points by applying one of a novel generalizations of convexity, called geometrically arithmetically convexity. To study this, we have firstly proved a new integral identity. Based on this identity, we have establish some new Maclaurin-type inequalities for functions whose modulus of the first derivatives are geometrically arithmetically convex via Hadamard fractional integral operators, which are very useful and important fractional integral operators in fractional calculus. We hope that the obtained results could be motivation researchers working in the of fractional calculus, and serve as inspiration for academics to prove novel results using more generalized forms of convexity together with other fractional integral operators.

Author Contributions

Conceptualization, T.C., B.M. and A.M.; Methodology, T.C., B.M. and A.M.; Formal analysis, T.C., B.M. and A.M.; Writing—original draft, T.C., B.M., A.M. and M.B.; Writing—review and editing, T.C., B.M., A.M. and M.B.; Project administration, A.M.; Funding acquisition, M.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by King Khalid University through large research project under grant number R.G.P.2/252/44.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I.; Khan, A.G. Some new bounds for Simpson’s rule involving special functions via harmonic h-convexity. J. Nonlinear Sci. Appl. 2017, 10, 1755–1766. [Google Scholar] [CrossRef]
  2. Chiheb, T.; Boumaza, N.; Meftah, B. Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech. 2020, 12, 1–10. [Google Scholar]
  3. Delavar, M.R.; De La Sen, M. Some generalizations of Hermite–Hadamard type inequalities. Springer Plus 2016, 5, 1661. [Google Scholar] [CrossRef] [PubMed]
  4. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
  5. İmdat, İ.; Bekar, K.; Numan, S. Hermite-Hadamard and Simpson type inequalities for differentiable quasi-geometrically convex functions. Turk. J. Anal. Number Theory 2014, 2, 42–46. [Google Scholar]
  6. İmdat, İ. Hermite-Hadamard and Simpson type inequalities for differentiable P-GA-functions. Int. J. Anal. 2014, 2014, 125439. [Google Scholar]
  7. Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.; Chu, Y. New Simpson Type Integral Inequalities for s-Convex Functions and Their Applications. Math. Probl. Eng. 2020, 31, 4415–4420. [Google Scholar] [CrossRef]
  8. Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. Nonlinear Sys. 2021, 1, 75–94. [Google Scholar] [CrossRef]
  9. Noor, M.A.; Noor, K.I.; Awan, M.U. Simpson-type inequalities for geometrically relative convex functions. Ukr. Math. J. 2018, 70, 1145–1154. [Google Scholar] [CrossRef]
  10. Sarikaya, M.Z. New generalizations of Hermite-Hadamard type inequalities. Turk. J. Ineq. 2023, 7, 29–39. [Google Scholar]
  11. Deng, J.; Wang, J. Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions. J. Inequal. Appl. 2013, 2013, 364. [Google Scholar] [CrossRef]
  12. İmdat, İ. New general integral inequalities for quasi-geometrically convex functions via fractional integrals. J. Inequal. Appl. 2013, 2013, 491. [Google Scholar]
  13. Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupaş, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski-type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar] [CrossRef]
  14. Meftah, B.; Azaizia, A. Fractional Ostrowski type inequalities for functions whose first derivatives are MT-preinvex. Rev. DeMatemáticas Univ. Del Atlántico Páginas 2019, 6, 33–43. [Google Scholar]
  15. İmdat, İ.; Aydin, M. Some new generalized integral inequalities for GA-s-convex functions via Hadamard fractional integrals. Chin. J. Math. 2016, 2016, 4361806. [Google Scholar]
  16. Qi, F.; Xi, B.-Y. Some integral inequalities of Simpson type for GA-ε-convex functions. Georgian Math. J. 2013, 20, 775–788. [Google Scholar] [CrossRef]
  17. Alomari, M.W.; Dragomir, S.S. Various error estimations for several Newton-Cotes quadrature formulae in terms of at most first derivative and applications in numerical integration. Jordan J. Math. Stat. 2014, 7, 89–108. [Google Scholar]
  18. Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar] [CrossRef]
  19. Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
  20. Özarslan, M.A.; Ustaoğlu, C. Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators. Mathematics 2019, 7, 483. [Google Scholar] [CrossRef]
  21. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  22. Park, J. Some Hermite-Hadamard-like type inequalities for logarithmically convex functions. Int. J. Math. Anal. 2013, 7, 2217–2233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chiheb, T.; Meftah, B.; Moumen, A.; Bouye, M. Maclaurin-Type Integral Inequalities for GA-Convex Functions Involving Confluent Hypergeometric Function via Hadamard Fractional Integrals. Fractal Fract. 2023, 7, 860. https://doi.org/10.3390/fractalfract7120860

AMA Style

Chiheb T, Meftah B, Moumen A, Bouye M. Maclaurin-Type Integral Inequalities for GA-Convex Functions Involving Confluent Hypergeometric Function via Hadamard Fractional Integrals. Fractal and Fractional. 2023; 7(12):860. https://doi.org/10.3390/fractalfract7120860

Chicago/Turabian Style

Chiheb, Tarek, Badreddine Meftah, Abdelkader Moumen, and Mohamed Bouye. 2023. "Maclaurin-Type Integral Inequalities for GA-Convex Functions Involving Confluent Hypergeometric Function via Hadamard Fractional Integrals" Fractal and Fractional 7, no. 12: 860. https://doi.org/10.3390/fractalfract7120860

APA Style

Chiheb, T., Meftah, B., Moumen, A., & Bouye, M. (2023). Maclaurin-Type Integral Inequalities for GA-Convex Functions Involving Confluent Hypergeometric Function via Hadamard Fractional Integrals. Fractal and Fractional, 7(12), 860. https://doi.org/10.3390/fractalfract7120860

Article Metrics

Back to TopTop