On the Existence and Ulam Stability of BVP within Kernel Fractional Time
Abstract
:1. Introduction
2. Essential Preliminaries
- .
3. Existence and Uniqueness
4. Stability Theorem
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Meral, F.C.; Royston, T.J.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equation. In Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Abbas, M.I. Existence and uniqueness of solution for a boundary value problem of fractional order involving two Caputo’s fractional derivatives. Adv. Differ. Equ. 2015, 2015, 252. [Google Scholar] [CrossRef]
- Abulahad, J.G.; Murad, S.A. Existence, uniqueness and stability theorems for certain functional fractional initial value problem. AL-Rafidain J. Comput. Sci. Math. 2011, 8, 59–70. [Google Scholar] [CrossRef]
- Abdulahad, J.G.; Murad, S.A. Local existence theorem of fractional differential equations in Lp Space. AL-Rafidain J. Comput. Math. 2012, 9, 71–78. [Google Scholar] [CrossRef]
- Abdulqader, D.N.; Murad, S.A. Existence and uniqueness results for certain fractional boundary value problems. J. Duhok Univ. 2019, 22, 76–88. [Google Scholar] [CrossRef]
- Abdulqader, D.N.; Murad, S.A. p-integrable solution of boundary fractional differential and integro-differential equations with Riemann derivatives of order (n − 1 < α < n). Montes Taurus J. Pure Appl. Math. 2022, 4, 1–10. [Google Scholar]
- Ahmadkhanlu, A. On The Existence of Positive Solutions for a Local Fractional Boundary Value Problem with an Integral Boundary Condition. Bol. Soc. Paran. Mat. 2021, 39, 53–66. [Google Scholar] [CrossRef]
- Hu, M.; Wang, L. Existence of solutions for a nonlinear fractional differential equation with integral boundary condition. Int. J. Math. Comput. Sci. 2011, 7, 55–58. [Google Scholar]
- Jalab, H.A.; Ibrahim, R.W.; Murad, S.A.; Hadid, S.B. Exact and numerical solution for fractional differential equation based on neural network. Proc. Pakistan Acad. Sci. 2012, 49, 199–208. [Google Scholar]
- Jalab, H.A.; Ibrahim, R.W.; Murad, S.A.; Melhum, A.I.; Hadid, S.B. Numerical Solution of Lane-Emden Equation Using Neural Network. In Proceedings of the International Conference on Fundamental and Applied Sciences 2012, Kuala Lumpur, Malaysia, 12–14 June 2012; Volume 1482, pp. 414–418. [Google Scholar]
- Lv, L.; Wang, J.; Wei, W. Existence and uniqueness results for fractional differential equations with boundary value conditions. Opusc. Math. 2011, 31, 629–643. [Google Scholar] [CrossRef]
- Murad, S.A.; Zekri, H.J.; Hadid, S. Existence and Uniqueness Theorem of Fractional Mixed Volterra-Fredholm Integrodifferential Equation with Integral Boundary Conditions. Int. J. Differ. 2011, 2011, 304570. [Google Scholar] [CrossRef]
- Murad, S.A.; Hadid, S. Existence and uniqueness theorem for fractional differential equation with integral boundary condition. J. Frac. Calc. Appl. 2012, 3, 1–9. [Google Scholar]
- Murad, S.A.; Ibrahim, R.W.; Hadid, S.B. Existence and uniqueness for solution of differential equation with mixture of integer and fractional derivative. Pak. Acad. Sci. 2012, 49, 33–37. [Google Scholar]
- Murad, S.A.; Rafeeq, A.S. Existence of solutions of integro-fractional differential equation when 2 (2, 3] throughfixed point theorem. J. Math. Comput. Sci. 2021, 11, 6392–6402. [Google Scholar] [CrossRef]
- Song, S.; Cui, Y. Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance. Bound. Value Probl. 2020, 2020, 23. [Google Scholar] [CrossRef]
- Gambo, Y.Y.; Jared, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Lachouri, A.; Ardjouni, A.; Djoudi, A. Existence and uniqueness of mild solutions of boundary value problems for Caputo-Hadamard fractional differential equations with integral and anti-periodic conditions. J. Fractional Calc. Appl. 2021, 12, 60–68. [Google Scholar]
- Rezapour, S.; Chikh, S.B.; Amara, A.; Ntouyas, S.K.; Etemad, J.T.S. Existence Results for Caputo–Hadamard Nonlocal Fractional Multi-Order Boundary Value Problems. Mathematics 2021, 9, 719. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Hamidi, N.; Henderson, J. Caputo-Hadamard fractional differential equations in Banach spaces. Fract. Calculus Appl. Anal. 2018, 21, 1027–1045. [Google Scholar] [CrossRef]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam-stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef]
- Chen, C.R.; Bohner, M.; Jia, B.G. Ulam-Hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Dai, Q.; Gao, R.M.; Li, Z.; Wang, C.J. Stability of Ulam–Hyers and Ulam–Hyers–Rassias for a class of fractional differential equations. Adv. Differ. Equ. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Ulam stability of boundary value problem. Kragujev. J. Math. 2013, 37, 287–297. [Google Scholar]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
- Hallaci, A.; Boulares, H.; Kurulay, M. On the study of nonlinear fractional differential equations on unbounded interval. Gen. Lett. Math. 2018, 5, 111–117. [Google Scholar] [CrossRef]
- Ardjouni, A.; Boulares, H.; Laskri, Y. Stability in higher-order nonlinear fractional differential equations. Acta Comment. Univ. Tartu. Math. 2018, 22, 37–47. [Google Scholar] [CrossRef]
- Moumen, A.; Shafqat, R.; Alsinai, A.; Boulares, H.; Cancan, M.; Jeelani, M.B. Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability. AIMS Math. 2023, 8, 16094–16114. [Google Scholar] [CrossRef]
- Murad, S.A.; Ameen, Z.A. Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives. AIMS Math. 2022, 7, 6404–6419. [Google Scholar] [CrossRef]
- Patil, J.; Chaudhari, A.; Abd, M.S.; Hardan, B.; Bachhav, A. Positive solution for a class of Caputo-type fractional differential equations. J. Math. Anal. Model. 2021, 2, 16–29. [Google Scholar]
- Rus, I.A. Ulam stabilities of ordinary differential equations. Stud. Univ.-Babes-Bolyai Math. 2009, 4, 125–133. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, H.; Imsatfia, M.; Boulares, H.; Moumen, A.; Alraqad, T. On the Existence and Ulam Stability of BVP within Kernel Fractional Time. Fractal Fract. 2023, 7, 852. https://doi.org/10.3390/fractalfract7120852
Saber H, Imsatfia M, Boulares H, Moumen A, Alraqad T. On the Existence and Ulam Stability of BVP within Kernel Fractional Time. Fractal and Fractional. 2023; 7(12):852. https://doi.org/10.3390/fractalfract7120852
Chicago/Turabian StyleSaber, Hicham, Moheddine Imsatfia, Hamid Boulares, Abdelkader Moumen, and Tariq Alraqad. 2023. "On the Existence and Ulam Stability of BVP within Kernel Fractional Time" Fractal and Fractional 7, no. 12: 852. https://doi.org/10.3390/fractalfract7120852
APA StyleSaber, H., Imsatfia, M., Boulares, H., Moumen, A., & Alraqad, T. (2023). On the Existence and Ulam Stability of BVP within Kernel Fractional Time. Fractal and Fractional, 7(12), 852. https://doi.org/10.3390/fractalfract7120852