Properties for a Certain Subclass of Analytic Functions Associated with the Salagean q-Differential Operator
Abstract
:1. Introduction
- The class is not empty since the function belongs to
- is the class of functions satisfying the following inequality:
2. Inclusion Relations
3. Convolution Conditions
4. Application of q-Fractional Calculus Operators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Schild, A. On starlike functions of order α. Am. J. Math. 1965, 87, 65–70. [Google Scholar] [CrossRef]
- MacGregor, T.H. The radius of convexity for starlike functions of order . Proc. Am. Math. Soc. 1963, 14, 71–76. [Google Scholar]
- Pinchuk, B. On starlike and convex functions of order α. Duke Math. J. 1968, 35, 721–734. [Google Scholar] [CrossRef]
- Chichra, P.N. New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 1977, 62, 37–43. [Google Scholar] [CrossRef]
- Aizenberg, L.A.; Leinartas, E.K. Multidimensional Hadamard Composition and Szego Kernel. Sib. Math. J. 1983, 24, 3–10. [Google Scholar]
- Leinartas, E.K. Multidimensional Hadamard Composition And Sums With Linear Constraints on The Summation Indexes. Sib. Math. J. 1989, 30, 250–255. [Google Scholar] [CrossRef]
- Sadykov, T.M. The Hadamard Product of Hypergeometric Series. Bull. Sci. Math. 2002, 126, 31–43. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edin. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Ali, E.E.; Srivastava, H.M.; Lashin, A.Y.; Albalahi, A.M. Applications of some subclasses of meromorphic functions associated with the q-derivatives of the q-binomials. Mathematics 2023, 11, 2496. [Google Scholar] [CrossRef]
- Azzam, A.A.; Breaz, D.; Shah, S.A.; Cotirla, L.-I. Study of the fuzzy q-spiral-like functions associated with the generalized linear operator. Aims Math. 2023, 8, 26290–26300. [Google Scholar] [CrossRef]
- Khan, N.; Khan, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Javed, U. Some applications of analytic functions associated with q-fractional operator. Mathematics 2023, 11, 930. [Google Scholar] [CrossRef]
- Lashin, A.Y.; Badghaish, A.O.; Algethami, B.M. On a certain subclass of p-valent analytic functions involving q-difference operator. Symmetry 2023, 15, 93. [Google Scholar] [CrossRef]
- Lashin, A.Y.; Badghaish, A.O.; Algethami, B.M. A Study on Certain Subclasses of Analytic Functions Involving the Jackson q-Difference Operator. Symmetry 2022, 14, 1471. [Google Scholar] [CrossRef]
- Noor, K.I. On analytic functions involving the q-Ruscheweyeh derivative. Fractal Fract. 2019, 3, 10. [Google Scholar] [CrossRef]
- Piejko, K.; Sokol, J.; Trabka-Wieclaw, K. On q-Calculus and Starlike Functions. Iran J. Sci. Technol. Trans. Sci. 2019, 43, 2879–2883. [Google Scholar] [CrossRef]
- Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp bounds of the Fekete–Szegö problemand second Hankel determinant for certain bi-univalent functions defined by a novel q-differential operator associated with q-Limacon domain. Fractal Fract. 2023, 7, 506. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-Calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Ponnusamy, S. differential subordination and starlike functions. Complex Var. Elliptic Equ. 1992, 19, 185–194. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On Univalent Functions Defined by a Generalized Salagean Operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Fejér, L. Uberdie positivitt von summen, die nach trigonometrischen oder Legendreschen funktionen fortschreiten. Acta Szeged 1925, 2, 75–86. (In Germany) [Google Scholar]
- Stankiewicz, J.; Stankiewicz, Z. Some applications of the Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie Sklodowska Sect. 1986, 40, 251–265. [Google Scholar]
- Singh, R.; Singh, S. Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106, 145–152. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Alb Lupas, A. Subordination Results on the q-Analogue of the Salagean Differential Operator. Symmetry 2022, 14, 1744. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Lashin, A.Y. Some convolution properties of analytic functions. Appl. Math. Lett. 2005, 18, 135–138. [Google Scholar] [CrossRef]
- Silverman, H.; Silvia, E.M.; Telage, D. Convolution conditions for convexity and starlikeness and spiral-likeness. Math. Z. 1978, 162, 125–130. [Google Scholar] [CrossRef]
- El-Emam, F.Z. Convolution conditions for two subclasses of analytic functions defined by Jackson q-difference operator. J. Egypt. Math. Soc. 2022, 30, 7. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-Calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Wongsaijai, B.; Sukantamala, N. Applications of fractional q-Calculus to certain subclass of analytic p-valent functions with negative coefficients. Abstr. Appl. Anal. 2015, 2015, 273236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashin, A.M.Y.; Badghaish, A.O.; Alshehri, F.A. Properties for a Certain Subclass of Analytic Functions Associated with the Salagean q-Differential Operator. Fractal Fract. 2023, 7, 793. https://doi.org/10.3390/fractalfract7110793
Lashin AMY, Badghaish AO, Alshehri FA. Properties for a Certain Subclass of Analytic Functions Associated with the Salagean q-Differential Operator. Fractal and Fractional. 2023; 7(11):793. https://doi.org/10.3390/fractalfract7110793
Chicago/Turabian StyleLashin, Abdel Moneim Y., Abeer O. Badghaish, and Fayzah A. Alshehri. 2023. "Properties for a Certain Subclass of Analytic Functions Associated with the Salagean q-Differential Operator" Fractal and Fractional 7, no. 11: 793. https://doi.org/10.3390/fractalfract7110793
APA StyleLashin, A. M. Y., Badghaish, A. O., & Alshehri, F. A. (2023). Properties for a Certain Subclass of Analytic Functions Associated with the Salagean q-Differential Operator. Fractal and Fractional, 7(11), 793. https://doi.org/10.3390/fractalfract7110793