An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control
Abstract
:1. Introduction
2. Single-Valued Problem
- is continuous in for every , and measurable for almost all and . There are two integrable functions with
- , and there exists a continuous function , and a non-decreasing continuous map with
- Let be a Lipschitzian function, with
- and there is a continuous function , whereand .
- , and there exists a measurable and bounded function which has norm with
- The real number r is the positive root of
2.1. Existence of Solutions
2.2. Existence of the Unique Solution
- Let be a Lipschitzian mapping, whereFrom this assumption, we see that the assumption is valid; then,
- .
2.3. Continuous Dependency on the Control Variable
3. Set-Valued Problem
- Let be non-empty and convex and let subset where
- (i)
- is upper semicontinuous in , .
- ()
- is measurable in .
- ()
- There exist , where with
Let be a Lipschitzian set-valued function with a nonempty compact convex subset of , where
- (a)
- The set is a non-empty, closed and convex subset for all.
- (b)
- is upper semicontinuous in for each .
- (c)
- is measurable in for each .
- (d)
- There exists two measurable and bounded functions with norm where
3.1. Existence Results
- . Let be a Lipschitzian multi-valued mapping with a nonempty convex compact subset of , with
3.2. Continuous Dependency on the Sets of Selections
3.3. Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Issa, S.M.; El-Sayed, A.M.A.; Hashem, H.H.G. On Chandrasekhar hybrid Caputo fractional modeling for thermostat via hybrid boundary value conditions in Banach algebra. In Proceedings of the 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Roma, Italy, 11–15 September 2023. [Google Scholar]
- Cahlon, B.; Schmidt, D.; Shillor, M.; Zou, X. Analysis of thermostat models. Eur. J. Appl. Math. 1997, 8, 437–457. [Google Scholar] [CrossRef]
- Zou, X.; Jordan, J.A.; Shillor, M. A dynamic model for a thermostat. J. Eng. Math. 1999, 36, 291–310. [Google Scholar] [CrossRef]
- Webb, J.R.L. Multiple positive solutions of some nonlinear heat flow problems. Conf. Publ. 2005, 2005, 895–903. [Google Scholar]
- Webb, J.R.L. Existence of positive solutions for a thermostat model. Nonlinear Anal. Real World Appl. 2012, 13, 923–938. [Google Scholar] [CrossRef]
- Shen, C.; Zhou, H.; Yang, L. Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter. Math. Methods Appl. Sci. 2016, 39, 4504–4511. [Google Scholar] [CrossRef]
- Liang, Y.; Levine, D.I.; Shen, Z.J. Thermostats for the smart grid: Models, benchmarks and insights. Energy J. 2012, 33, 61–95. [Google Scholar] [CrossRef]
- Aydi, H.; Jleli, M.; Samet, B. On Positive Solutions for a Fractional Thermostat Model with a Convex–Concave Source Term via ψ-Caputo Fractional Derivative. Mediterr. J. Math. 2020, 17, 16. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analysis of a hybrid integro-differential inclusion. Bound. Value Probl. 2022, 2022, 68. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Agarwal, R.P.; Nonlaopon, K. On a Lyapunov-Type Inequality for Control of a y-Model Thermostat and the Existence of Its Solutions. Mathematics 2022, 10, 4023. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Kontes, G.D.; Giannakis, G.I.; Horn, P.; Steiger, S.; Rovas, D.V. Using thermostats for indoor climate control in office buildings: The effect on thermal comfort. Energies 2017, 10, 1368. [Google Scholar] [CrossRef]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equation. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar]
- Caballero, J.; Mingarelli, A.B.; Sadarangani, K. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electron. J. Differ. Equ. 2006, 2006, 1–11. [Google Scholar]
- Busbridge, W. On Solutions of Chandrasekhar’s Integral Equation. J. Am. Math. Soc. 1962, 105, 112–117. [Google Scholar]
- Dhage, B.C. A fixed point theorem in Banach algebras involving three operators with applications. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Dhage, B.C. Nonlinear Functional Boundary Value Problems in Banach Algebras Involving Carathéodories. Kyungpook Math. J. 2006, 46, 427–441. [Google Scholar]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 2019, 473. [Google Scholar] [CrossRef]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]
- Piazza, L.D.; Marraffa, V.; Satco, B. Approximating the solutions of differential inclusions driven by measures. Ann. Mat. Pur Appl. 1923 2019, 198, 2123–2140. [Google Scholar] [CrossRef]
- Satco, B. Continuous dependence results for set-valued measure differential problems. Electron. Qual. Theory Differ. Equ. 2015, 79, 1–15. [Google Scholar] [CrossRef]
- Satco, B. Existence results for Urysohn integral inclusions involving the Henstock integral. J. Math. Anal. Appl. 2007, 336, 44–53. [Google Scholar] [CrossRef]
- Baleanu, D.; Hedayati, V.; Rezapour, S.; Al Qurash, M. On two fractional differential inclusions. SpringerPlus 2016, 5, 882. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 264. [Google Scholar]
- Chen, F. The permanence and global attractivity of Lotka–Volterra competition system with feedback controls. Nonlinear Anal. Real World Appl. 2006, 7, 133–143. [Google Scholar] [CrossRef]
- Nasertayoob, P. Solvability and asymptotic stability of a class of nonlinear functional-integral equation with feedback control. Commun. Nonlinear Anal. 2018, 5, 19–27. [Google Scholar]
- Nasertayoob, P.; Vaezpour, S.M. Positive periodic solution for a nonlinear neutral delay population equation with feedback control. J. Nonlinear Sci. Appl. 2013, 6, 152–161. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical Contribution to a Cubic Functional Integral Equation with Feedback Control on the Real Half Axis. Mathematics 2023, 11, 1133. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hamdallah, E.A.; Ahmed, R.G. On a nonlinear constrained problem of a nonlinear functional integral equation. Appl. Anal. Optim. 2022, 6, 95–107. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. New Aspects on the Solvability of a Multidimensional Functional Integral Equation with Multivalued Feedback Control. Axioms 2023, 12, 653. [Google Scholar] [CrossRef]
- Hashem, H.H.G.; El-Sayed, A.M.A.; Al-Issa, S.M. Investigating Asymptotic Stability for Hybrid Cubic Integral Inclusion with Fractal Feedback Control on the Real Half-Axis. Fractal Fract. 2023, 7, 449. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Issa, S.M.; El-Sayed, A.M.A.; Hashem, H.H.G. An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control. Fractal Fract. 2023, 7, 759. https://doi.org/10.3390/fractalfract7100759
Al-Issa SM, El-Sayed AMA, Hashem HHG. An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control. Fractal and Fractional. 2023; 7(10):759. https://doi.org/10.3390/fractalfract7100759
Chicago/Turabian StyleAl-Issa, Shorouk M., Ahmed M. A. El-Sayed, and Hind H. G. Hashem. 2023. "An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control" Fractal and Fractional 7, no. 10: 759. https://doi.org/10.3390/fractalfract7100759
APA StyleAl-Issa, S. M., El-Sayed, A. M. A., & Hashem, H. H. G. (2023). An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control. Fractal and Fractional, 7(10), 759. https://doi.org/10.3390/fractalfract7100759