Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA)
Abstract
:1. Introduction
- (1)
- From the perspectives of cryptography and information theory, quantum transformation theory is applied as a new tool to quantum image encryption technology. Hence, based on Hadamard transformation theory and CNOT gate (entangle qubits procedure), we design a safe and efficient quantum image encryption with a new algorithm.
- (2)
- The proposed quantum image encryption scheme uses both confusion and diffusion to achieve a higher level of security, which is developed in accordance with Shannon’s theories.
- (3)
- Two different types of chaos, namely, a Lü system as a hyperchaotic system or a quantum logistic map as a multi-dimensional chaotic map (pixel-level diffusion), are utilized in designing a new visually meaningful quantum image cryptosystem.
- (4)
- The proposed scheme uses a secret key generated dependent on the original image to determine the number of cycles for both chaotic systems. Hence, it verifies that the proposed scheme has a strong resistance to chosen-plaintext attacks.
- (5)
- Concretely, this study investigates the integration of quantum cellular automata (QCA) as a quantum-inspired model and mixed multi-chaos maps as hybrid chaotic maps (pixel-level permutation).
- (6)
- To accomplish the permutation process, a circular shift is utilized to additionally shuffle the rows and columns of the diffused R, G, and B channels.
- (7)
- The key size of the proposed algorithm is sufficiently large to withstand brute-force attacks.
- (8)
- Statistical analysis, differential analysis, key analysis, and robustness analysis confirm that the designed scheme achieves a high level of security against most various attacks.
- (9)
- The proposed quantum scheme attains a reduced time complexity, leading to faster encryption and decryption processes. Additionally, a lower time complexity can make the proposed scheme more resistant to attacks that rely on brute-force methods as there are fewer possible combinations to test within a given amount of time.
- (10)
- The efficacy of the proposed method in safeguarding quantum image information is validated using numerical simulation and performance comparison.
2. Preliminary Knowledge
2.1. Hyperchaotic Systems
2.1.1. Hyperchaotic Lü System
2.1.2. Hyperchaotic Quantum Logistic Map
2.2. Hadamard Gate
2.3. Quantum Cellular Automata
2.4. Hybrid Chaotic Maps
3. Proposed Quantum Image Encryption and Decryption Scheme
3.1. Encryption Procedure
3.1.1. Pixel Plane Diffusion
3.1.2. Pixel Plane Confusion
3.2. Decryption Procedure
4. Experimental Results and Numerical Analysis
4.1. Experiment Platform
4.2. Experiment Results
4.3. Security Analysis
4.3.1. Key Security Analysis
Key Space Analysis
Key Sensitivity Analysis
4.3.2. Statistical Attack Analysis
Histogram Analysis
Information Entropy Analysis
Correlation Distribution Analysis
4.3.3. Differential Attack Analysis
4.3.4. Robustness to Attacks Analysis
Chosen/Known-Plaintext Attacks Analysis
Noise Attack Analysis
Occlusion Attack Analysis
4.3.5. Time Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AbdElHaleem, S.H.; Abd-El-Hafiz, S.K.; Radwan, A.G. A generalized framework for elliptic curves based PRNG and its utilization in image encryption. Sci. Rep. 2022, 12, 13278. [Google Scholar] [CrossRef] [PubMed]
- Khalid, I.; Shah, T.; Eldin, S.; Shah, D.; Asif, M.; Saddique, I. An Integrated Image Encryption Scheme Based on Elliptic Curve. IEEE Access 2023, 11, 5483–5501. [Google Scholar] [CrossRef]
- Liu, Y.; Cen, G.; Xu, B.; Wang, X. Color Image Encryption Based on Deep Learning and Block Embedding. Secur. Commun. Netw. 2022, 2022, 6047349. [Google Scholar] [CrossRef]
- Liu, G.; Li, W.; Fan, X.; Li, Z.; Wang, Y.; Ma, H. An Image Encryption Algorithm Based on Discrete-Time Alternating Quantum Walk and Advanced Encryption Standard. Entropy 2022, 24, 608. [Google Scholar] [CrossRef]
- Rezai, A.; Aliakbari, D.; Karimi, A. Novel multiplexer circuit design in quantum-dot cellular automata technology. Nano Commun. Netw. 2023, 35, 100435. [Google Scholar] [CrossRef]
- Chen, X.; Gong, M.; Gan, Z.; Lu, Y.; Chai, X.; He, X. CIE-LSCP: Color image encryption scheme based on the lifting scheme and cross-component permutation. Complex Intell. Syst. 2023, 9, 927–950. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; El-Latif, A. Single-Objective Particle Swarm Optimization-Based Chaotic Image Encryption Scheme. Electronics 2022, 11, 2628. [Google Scholar] [CrossRef]
- Hua, W.; Dong, Y. Quantum color image encryption based on a novel 3D chaotic system. Appl. Phys. 2022, 131, 114402. [Google Scholar] [CrossRef]
- Tian, P.; Su, R. A Novel Virtual Optical Image Encryption Scheme Created by Combining Chaotic S-Box with Double Random Phase Encoding. Sensors 2022, 22, 5325. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Xu, M.; Li, X. A novel content-selected image encryption algorithm based on the LS chaotic model. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 8245–8259. [Google Scholar] [CrossRef]
- Abd-El-Atty, B.; Abd El-Latif, A.; Venegas-Andraca, S. An encryption protocol for NEQR images based on one-particle quantum walks on a circle. Quantum Inf. Process. 2019, 18, 272. [Google Scholar] [CrossRef]
- Mohamed, N.; El-Azeim, M.; Zaghloul, A. Improving Image Encryption Using 3D Cat Map and Turing Machine. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2016, 7, 208–215. [Google Scholar]
- Wang, P.; Wang, Y.; Xiang, J.; Xiao, X. Fast Image Encryption Algorithm for Logistics-Sine-Cosine Mapping. Sensors 2022, 22, 9929. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.; Zaghloul, A.; El-Azeim, M. Color Block Image Encryption Scheme based on Confusion—Diffusion Architecture. J. Inf. Assur. Secur. 2015, 10, 250–259. [Google Scholar]
- Mohamed, N.; Youssif, A.; El-Sayed, H. Fast and Robust Image Encryption Scheme Based on Quantum Logistic Map and Hyperchaotic System. Complexity 2022, 2022, 3676265. [Google Scholar] [CrossRef]
- Ullah, A.; Shah, A.; Khan, J.; Sajjad, M.; Boulila, W.; Akgul, A.; Masood, J.; Ghaleb, F.; Shah, S.; Ahmad, J. An Efficient Lightweight Image Encryption Scheme Using Multichaos. Secur. Commun. Netw. 2022, 2022, 5680357. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Xiang, H. A Novel Plain-Text Related Image Encryption Algorithm Based on LB Compound Chaotic Map. Mathematics 2021, 9, 2778. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J. A cluster of 1D quadratic chaotic map and its applications in image encryption. Math. Comput. Simul. 2023, 204, 89–114. [Google Scholar] [CrossRef]
- Zang, H.; Tai, M.; Wei, X. Image Encryption Schemes Based on a Class of Uniformly Distributed Chaotic Systems. Mathematics 2022, 10, 1027. [Google Scholar] [CrossRef]
- Zhu, S.; Deng, X.; Zhang, W.; Zhu, C. Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding. Mathematics 2022, 11, 231. [Google Scholar] [CrossRef]
- Rong, X.; Jiang, D.; Zheng, M.; Yu, X.; Wang, X. Meaningful data encryption scheme based on newly designed chaotic map and P-tensor product compressive sensing in WBANs. Nonlinear Dyn. 2022, 110, 2831–2847. [Google Scholar] [CrossRef]
- Zhua, H.; Gea, J.; Qia, W.; Zhanga, X.; Lu, X. Dynamic analysis and image encryption application of a sinusoidal-polynomial composite chaotic system. Math. Comput. Simul. 2022, 198, 188–210. [Google Scholar] [CrossRef]
- Mondal, B.; Singh, S.; Kumar, P. A secure image encryption scheme based on cellular automata and chaotic skew tent map. J. Inf. Secur. Appl. 2019, 45, 117–130. [Google Scholar] [CrossRef]
- Alexan, W.; ElBeltagy, M.; Aboshousha, A. Lightweight Image Encryption: Cellular Automata and the Lorenz System. In Proceedings of the 2021 International Conference on Microelectronics (ICM), IEEE, New Cairo City, Egypt, 19–22 December 2021. [Google Scholar]
- Wang, X.; Guan, N.; Zhao, H.; Wang, S.; Zhang, Y. A new image encryption scheme based on coupling map lattices with mixed multi-chaos. Sci. Rep. 2020, 10, 9784. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. A Quantum Image Encryption Method Based on DNACNot. IEEE Access 2020, 8, 178336–178344. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, D.; Liu, C. Three-level quantum image encryption based on Arnold transform and logistic map. Quantum Inf. Process. 2021, 20, 23. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, J.; Lei, H.; Zhou, Y.; Shi, W. Novel quantum image encryption using one-dimensional quantum cellular automata. Inf. Sci. 2016, 345, 257–270. [Google Scholar] [CrossRef]
- Khan, M.; Waseem, H. A novel image encryption scheme based on quantum dynamical spinning and Rotations. PLoS ONE 2018, 13, e0206460. [Google Scholar] [CrossRef]
- Khan, M.; Rasheed, A. A fast quantum image encryption algorithm based on affine transform and fractional-order Lorenz-like chaotic dynamical system. Quantum Inf. Process. 2022, 21, 134. [Google Scholar] [CrossRef]
- Wang, H.-K.; Xu, G.-B.; Jiang, D.-H. Quantum grayscale image encryption and secret sharing schemes based on Rubik’s Cube. Phys. A Stat. Mech. Its Appl. 2023, 612, 128482. [Google Scholar] [CrossRef]
- Sedik, A.; Abd El-Latif, A.; Wani, M.; Abd El-Samie, F.; Bauomy, N.; Hashad, F. Efficient Multi-Biometric Secure-Storage Scheme Based on Deep Learning and Crypto-Mapping Techniques. Mathematics 2023, 11, 703. [Google Scholar] [CrossRef]
- Ma, Y.; Li, N.; Zhang, W.; Wang, S.; Ma, H. Image encryption scheme based on alternate quantum walks and discrete cosine transform. Opt. Express 2021, 29, 28338–28351. [Google Scholar] [CrossRef] [PubMed]
- Abdelfatah, R. Quantum Image Encryption Using a Self-Adaptive Hash Function-Controlled Chaotic Map (SAHF-CCM). IEEE Access 2022, 10, 107152–107169. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, S. Image encryption scheme based on a controlled zigzag transform and bit-level encryption under the quantum walk. Front. Phys. 2023, 10, 1097754. [Google Scholar] [CrossRef]
- Hyperchaos. Available online: http://www.scholarpedia.org/article/Hyperchaos (accessed on 20 May 2023).
- Yadav, N.P.; Handa, H. Projective synchronization for a new class of chaotic/hyperchaotic systems with and without parametric uncertainty. Trans. Inst. Meas. Control. 2023, 45, 1975–1985. [Google Scholar] [CrossRef]
- Singh, J.; Roy, B. 5-D Hyperchaotic and Chaotic Systems with Non-hyperbolic Equilibria and Many Equilibria. In Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors, Studies in Systems, Decision and Control, 1st ed.; Pham, V.-T., Volos, C.S., Kapitaniak, T., Eds.; Springer: Warsaw, Poland, 2018; Volume 133, pp. 465–497. [Google Scholar]
- Zhang, J.; Xu, L. A novel asymmetrical double-wing hyperchaotic system with multiple different attractors: Application to finite-time synchronization and image encryption. Multimed. Tools Appl. 2023, 82, 37503–37527. [Google Scholar] [CrossRef]
- Zhong, M.; Yan, Z. Data-driven forward and inverse problems for chaotic and hyperchaotic dynamic systems based on two machine learning architectures. Phys. D Nonlinear Phenom. 2023, 446, 133656. [Google Scholar] [CrossRef]
- Yang, J.; Feng, Z.; Liu, Z. A New Five-Dimensional Hyperchaotic System with Six Coexisting Attractors. Qual. Theory Dyn. Syst. 2021, 20, 18. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G. A new chaotic attractor coined. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2002, 12, 659–661. [Google Scholar] [CrossRef]
- Lai, Q.; Norouzi, B.; Liu, F. Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors. Chaos Solitons Fractals 2018, 114, 230–245. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl. Math. Comput. 2015, 256, 334–343. [Google Scholar] [CrossRef]
- Chena, A.; Lua, J.; Lü, J.; Yu, S. Generating hyperchaotic Lu¨ attractor via state feedback control. Phys. A Stat. Mech. Its Appl. 2006, 364, 103–110. [Google Scholar] [CrossRef]
- Ye, G.; Jiao, K.; Huang, X. Quantum logistic image encryption algorithm based on SHA-3 and RSA. Nonlinear Dyn. 2021, 104, 2807–2827. [Google Scholar] [CrossRef]
- Ye, G.; Jiao, K.; Huang, X.; Goi, B.-M.; Yap, W.-S. An image encryption scheme based on public key cryptosystem and quantum logistic map. Sci. Rep. 2020, 10, 21044. [Google Scholar] [CrossRef] [PubMed]
- All about Hadamard Gates. Available online: https://freecontent.manning.com/all-about-hadamard-gates/ (accessed on 26 May 2023).
- Hadamard Gate. Available online: https://www.sciencedirect.com/topics/engineering/hadamard-gate (accessed on 26 May 2023).
- Young, R.; Birch, P.; Chatwin, C. Coherent optical implementations of the fast Fourier transform and their comparison to the optical implementation of the quantum Fourier transform. In Proceedings of the SPIE—The International Society for Optical Engineering, Baltimore, MD, USA, 29 April–3 May 2013. [Google Scholar]
- Miranda, E.; Miller-Bakewell, H. Cellular Automata Music Composition: From Classical to Quantum. In Quantum Computer Music, 1st ed.; Miranda, E.R., Ed.; Springer: Plymouth, UK, 2022; pp. 105–130. [Google Scholar]
- A Review of Quantum Cellular Automata. Available online: https://quantum-journal.org/papers/q-2020-11-30-368/ (accessed on 26 May 2023).
- Wiesner, K. Quantum Cellular Automata. In Encyclopedia of Complexity and Systems Science, 1st ed.; Meyers, R., Ed.; Springer: New York, NY, USA, 2009; Volume 18, pp. 7154–7164. [Google Scholar]
- Mfungo, D.; Fu, X.; Xian, Y.; Wang, X. A Novel Image Encryption Scheme Using Chaotic Maps and Fuzzy Numbers for Secure Transmission of Information. Appl. Sci. 2023, 13, 7113. [Google Scholar] [CrossRef]
- Kari, A.; Navin, A.; Bidgoli, A.; Mirnia, M. A new image encryption scheme based on hybrid chaotic maps. Multimed. Tools Appl. 2020, 80, 2753–2772. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Cryptography Bell System Technical Memo MM; Alcatel-Lucent: Paris, France, 1945. [Google Scholar]
- Liu, W.; Xu, Y.; Liu, W.; Wang, H.; Lei, Z. Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation. IEEE Access 2019, 7, 186284–186295. [Google Scholar] [CrossRef]
- CVG-UGR-Image Database. Available online: https://ccia.ugr.es/cvg/dbimagenes/ (accessed on 14 February 2023).
- The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 14 February 2023).
- Li, N.; Xie, S.; Zhang, J. A Color Image Encryption Algorithm Based on Double Fractional Order Chaotic Neural Network and Convolution Operation. Entropy 2022, 24, 933. [Google Scholar] [CrossRef]
- Erkan, U.; Toktas, A.; Enginoğlu, S.; Akbacak, E.; Thanh, D. An image encryption scheme based on chaotic logarithmic map and key generation using deep CNN. Multimed. Tools Appl. 2022, 81, 7365–7391. [Google Scholar] [CrossRef]
- Sun, M.; Cui, W.; Tao, Y.; Shi, T. Chaotic Color Image Encryption Algorithm Based on RNA Operations and Heart Shape Chunking. IAENG Int. J. Comput. Sci. 2023, 50, 1–14. [Google Scholar]
- Shen, Y.; Huang, J.; Chen, L.; Wen, T.; Li, T.; Zhang, G. Fast and Secure Image Encryption Algorithm with Simultaneous Shuffling and Diffusion Based on a Time-Delayed Combinatorial Hyperchaos Map. Entropy 2023, 25, 753. [Google Scholar] [CrossRef]
- Hua, N.; Liu, H.-Y.; Xiong, X.-Y.; Wang, J.-L.; Lian, J.-Q. A Dynamic Image Encryption Scheme Based on Quantum Walk and Chaos-Induced DNA. Quantum Eng. 2023, 2023, 3431107. [Google Scholar] [CrossRef]
- Aouissaoui, I.; Bakir, T.; Sakly, A. Robustly correlated key-medical image for DNA-chaos based encryption. IET Image Process. 2021, 15, 122770–122786. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wang, J.; Liu, J.; Yang, D.; Chen, S. A New Digital Image Encryption Algorithm Based on Improved Logistic Mapping and Josephus Circle. J. Comput. Commun. 2018, 6, 31–44. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Yu, K.; Gao, Y.; Ma, Y. An Image Encryption Scheme Based on Logistic Quantum Chaos. Entropy 2022, 24, 251. [Google Scholar] [CrossRef] [PubMed]
- Alexan, W.; Elkandoz, M.; Mashaly, M.; Azab, E.; Aboshousha, A. Color Image Encryption Through Chaos and KAA Map. IEEE Access 2023, 11, 11541–11554. [Google Scholar] [CrossRef]
- Jirjees, S.; Alkalid, F.; Shareef, W. Image Encryption Using Dynamic Image as a Key Based on Multilayers of Chaotic Permutation. Symmetry 2023, 15, 409. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Chelloug, S.; Wani, M.; Abd El-Latif, A. Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing. Mathematics 2023, 11, 1589. [Google Scholar] [CrossRef]
- Kitio, G.; Fanda, A.; Feulefack, I.; Pone, J.; Kengne, R.; Tiedeu, A. Biomedical Image Encryption with a Novel Memristive Chua Oscillator Embedded in a Microcontroller. Braz. J. Phys. 2023, 53, 56. [Google Scholar] [CrossRef]
- Shafique, A.; Mehmood, A.; Elhadef, M.; Khan, K. A lightweight noise-tolerant encryption scheme for secure communication: An unmanned aerial vehicle application. PLoS ONE 2022, 17, e0273661. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, L.; Zhu, C. Symmetric Image Encryption Algorithm Based on a New Product Trigonometric Chaotic Map. Symmetry 2022, 14, 373. [Google Scholar] [CrossRef]
- Abd El-Latif, A.; Ramadoss, J.; Abd-El-Atty, B.; Khalifa, H.; Nazarimehr, F. A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis. Mathematics 2022, 10, 2434. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, C.; Yan, H. Cryptanalyzing and Improving an Image Encryption Algorithm Based on Chaotic Dual Scrambling of Pixel Position and Bit. Entropy 2023, 25, 400. [Google Scholar] [CrossRef]
- Abd-El-Atty, B.; ElAffendi, M.; Abd El-Latif, A. A novel image cryptosystem using gray code, quantum walks, and Henon map for cloud applications. Complex Intell. Syst. 2022, 9, 609–624. [Google Scholar] [CrossRef]
- Shraida, G.; Younis, H.; Al-Amiedy, T.; Anbar, M.; Younis, H.; Hasbullah, I. An Efficient Color-Image Encryption Method Using DNA Sequence and Chaos Cipher. Comput. Mater. Contin. 2023, 75, 2641–2654. [Google Scholar] [CrossRef]
- Alli, P.; Peter, J. Three Tier Framework Iris Authentication for Secure Image Storage and Communication. Theor. Appl. Inf. Technol. 2023, 101, 2498–2516. [Google Scholar]
- Song, X.; Chen, G.; Abd El-Latif, A. Quantum Color Image Encryption Scheme Based on Geometric Transformation and Intensity Channel Diffusion. Mathematics 2022, 10, 3038. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Li, B.; Banerje, S.; Sun, B. Multi-Image Hybrid Encryption Algorithm Based on Pixel Substitution and Gene Theory. Fractals 2023, 31, 2340111. [Google Scholar] [CrossRef]
- Zheng, J.; Bao, T. An Image Encryption Algorithm Using Cascade Chaotic Map and S-Box. Entropy 2022, 24, 1827. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Du, H.; Huang, D. A Quantum Image Encryption Algorithm Based on The Feistel Structure. Quantum Inf. Process. 2022, 21, 20. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Fan, L.; Yu, S. A Novel Chaotic Image Encryption Scheme Armed with Global Dynamic Selection. Entropy 2023, 25, 476. [Google Scholar] [CrossRef] [PubMed]
- Man, X.; Song, Y. Encryption of Color Images with an Evolutionary Framework Controlled by Chaotic Systems. Entropy 2023, 25, 631. [Google Scholar] [CrossRef]
- Gao, X.; Miao, M.; Chen, X. Multi-Image Encryption Algorithm for 2D and 3D Images Based on Chaotic System. Front. Phys. 2022, 10, 901800. [Google Scholar] [CrossRef]
- Alawida, M.; Teh, J.S.; Alshoura, W.H. A New Image Encryption Algorithm Based on DNA State Machine for UAV Data Encryption. Drones 2023, 7, 38. [Google Scholar] [CrossRef]
- Huo, D.; Zhu, Z.; Zhou, X.; Wei, L.; Bai, X.; Bai, Y.; Han, C. A flexible and visually meaningful multi-image compression, encryption and hiding scheme based on 2D compressive sensing. Heliyon 2023, 9, e14072. [Google Scholar] [CrossRef]
- Neamah, A. An image encryption scheme based on a seven-dimensional hyperchaotic system and Pascal’s matrix. J. King Saud Univ.—Comput. Inf. Sci. 2023, 35, 3238–3248. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Zhang, L. Block Image Encryption Algorithm Based on Novel Chaos and DNA Encoding. Information 2023, 14, 150. [Google Scholar] [CrossRef]
- Liang, J.; Song, Z.; Sun, Z.; Lv, M.; Ma, H. Coupling Quantum Random Walks with Long- and Short-Term Memory for High Pixel Image Encryption Schemes. Entropy 2023, 25, 353. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, F.-F.; Gong, L.-H.; Zou, W.-P. Fast quantum image encryption scheme based on multilayer short memory fractional order Lotka-Volterra system and dual-scale triangular map. Front. Phys. 2022, 10, 1001. [Google Scholar] [CrossRef]
- Khan, S.; Han, L.; Mudassir, G.; Guehguih, B.; Ullah, H. 3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA. Entropy 2019, 21, 1075. [Google Scholar] [CrossRef]
- Iqbal, N.; Hanif, M.; Abbas, S.; Khan, M.; Almotiri, S.; Al Ghamd, M. DNA Strands Level Scrambling Based Color Image Encryption Scheme. IEEE Access 2020, 8, 178167–178182. [Google Scholar] [CrossRef]
- Yang, C.; Taralova, I.; El Assad, S.; Loiseau, J.-J. Image encryption based on fractional chaotic pseudo-random number generator and DNA encryption method. Nonlinear Dyn. 2022, 109, 2103–2127. [Google Scholar] [CrossRef]
Image | Male | Baboon | Airport | Lena | Splash | Airplane |
---|---|---|---|---|---|---|
Size | 256 × 256 | 512 × 512 | 1024 × 1024 | 256 × 256 | 512 × 512 | 1024 × 1024 |
Type | Grayscale | Grayscale | Grayscale | Color | Color | Color |
Image Name | Variance Value | |
---|---|---|
Plain Image | Cipher Image | |
Male | 36,436.4941 | 251.1294 |
Baboon | 1,185,695.4275 | 1332.502 |
Airport | 31,720,325.7098 | 4023.2078 |
Image Name | Variance Value | |||||
---|---|---|---|---|---|---|
Plain Image | Cipher Image | |||||
R | G | B | R | G | B | |
Lena | 62,616.6039 | 29,467.3176 | 88,387.1922 | 240.5804 | 298.9725 | 248.9176 |
Splash | 2,432,151.2863 | 3,095,990.0627 | 5,940,168.3608 | 1124.4157 | 2305.9843 | 1175.0431 |
Airplane | 43,315,434.4549 | 43,368,407.9686 | 71,618,941.898 | 3903.5608 | 8508.5098 | 4671.0588 |
Image Name | Dimension | Information Entropy | Local Shannon Entropy | ||
---|---|---|---|---|---|
Plain Image | Cipher Image | Plain Image | Cipher Image | ||
Male | 256 × 256 | 7.5341 | 7.9972 | 6.9856 | 7.9542 |
Baboon | 512 × 512 | 7.0800 | 7.9991 | 6.8492 | 7.9888 |
Airport | 1024 × 1024 | 6.8303 | 7.9998 | 6.5529 | 7.9972 |
Lena | 256 × 256 × 3 | 7.7508 | 7.9990 | 7.3532 | 7.9846 |
Splash | 512 × 512 × 3 | 7.2428 | 7.9996 | 6.5284 | 7.9958 |
Airplane | 1024 × 1024 × 3 | 6.6654 | 7.9999 | 6.1091 | 7.9989 |
Image Name | Dimension | Information Entropy | |||||
---|---|---|---|---|---|---|---|
Proposed Scheme | Ref. [15] | Ref. [67] | Ref. [77] | Ref. [78] | Ref. [79] | ||
Airplane | 256 × 256 | 7.9977 | - | - | - | 7.9236 | - |
Baboon | 512 × 512 | 7.9991 | - | 7.9985 | - | - | - |
Male | 1024 × 1024 | 7.9998 | 7.9998 | 7.9996 | - | - | - |
Lena | 256 × 256 × 3 | 7.9990 | - | - | 7.9971 | - | - |
Splash | 512 × 512 × 3 | 7.9996 | - | - | - | - | 7.9992 |
Mandrill | 1024 × 1024 × 3 | 7.9999 | 7.9999 | - | - | - | - |
Image Name | Plain Image | Cipher Image | ||||
---|---|---|---|---|---|---|
Vertical | Horizontal | Diagonal | Vertical | Horizontal | Diagonal | |
Male | 0.9630 | 0.9517 | 0.9240 | −0.0039 | 0.0042 | −0.0055 |
Baboon | 0.8910 | 0.9007 | 0.8240 | 0.0009 | 0.0036 | −0.0007 |
Airport | 0.9034 | 0.9099 | 0.8590 | 0.0034 | 0.0019 | −0.0016 |
Lena | 0.9725 | 0.9479 | 0.9231 | 0.0045 | −0.0019 | 0.0037 |
Splash | 0.9951 | 0.9936 | 0.9894 | 0.0040 | −0.0017 | −0.0031 |
Airplane | 0.9904 | 0.9937 | 0.9845 | 0.0018 | 0.0001 | 0.0003 |
Image Name | Image Size | NPCR (%) | UACI (%) |
---|---|---|---|
Male | 256 × 256 | 99.6586 | 33.6368 |
Baboon | 512 × 512 | 99.6243 | 33.4917 |
Airport | 1024 × 1024 | 99.6149 | 33.4560 |
Image Name | Dimension | NPCR (%) | UACI (%) | ||||
---|---|---|---|---|---|---|---|
Red | Green | Blue | Red | Green | Blue | ||
Lena | 256 × 256 × 3 | 99.6078 | 99.6432 | 99.6386 | 33.5419 | 33.4985 | 33.5333 |
Splash | 512 × 512 × 3 | 99.6147 | 99.6446 | 99.6082 | 33.4492 | 33.5153 | 33.4453 |
Airplane | 1024 × 1024 × 3 | 99.6128 | 99.6099 | 99.6131 | 33.4585 | 33.4692 | 33.4790 |
Attack Intensity | PSNR (db) | ||
---|---|---|---|
R | G | B | |
0.001 | 35.7982 | 35.6893 | 33.6509 |
0.005 | 33.0676 | 33.5090 | 32.4071 |
0.01 | 31.2846 | 31.8355 | 31.2754 |
0.05 | 25.3220 | 25.8874 | 26.5529 |
Image Name | Image Size | Encryption/Decryption Time (s) |
---|---|---|
Grayscale Male | 256 × 256 | 1.7813 |
Color Lena | 256 × 256 | 3.1094 |
Grayscale Baboon | 512 × 512 | 4.1094 |
Color Splash | 512 × 512 | 9.5469 |
Grayscale Airport | 1024 × 1024 | 13.7188 |
Color Airplane | 1024 × 1024 | 35.7031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, N.A.E.-S.; El-Sayed, H.; Youssif, A. Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA). Fractal Fract. 2023, 7, 734. https://doi.org/10.3390/fractalfract7100734
Mohamed NAE-S, El-Sayed H, Youssif A. Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA). Fractal and Fractional. 2023; 7(10):734. https://doi.org/10.3390/fractalfract7100734
Chicago/Turabian StyleMohamed, Nehal Abd El-Salam, Hala El-Sayed, and Aliaa Youssif. 2023. "Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA)" Fractal and Fractional 7, no. 10: 734. https://doi.org/10.3390/fractalfract7100734
APA StyleMohamed, N. A. E. -S., El-Sayed, H., & Youssif, A. (2023). Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA). Fractal and Fractional, 7(10), 734. https://doi.org/10.3390/fractalfract7100734