Applications of the Neutrosophic Poisson Distribution for Bi-Univalent Functions Involving the Modified Caputo’s Derivative Operator
Abstract
:1. Introduction
2. Main Results
3. Instance of a Case Study
4. The Importance of the Fekete–Szego Inequality Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bieberbach, L. Über dié Koeffizienten Derjenigen Potenzreihen, Welche eine Schlichte Abbildung des Einheitskreises Vermitteln; Reimer in Komm: Berlin, Germany, 1916. [Google Scholar]
- De-Branges, L. A proof of the Bieberbach conjecture. Acta. Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.P.; Goswami, P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives. J. Egyptian Math. Soc. 2012, 20, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egyptian Math. Soc. 2015, 23, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Caglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turkish J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839–1845. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iranian Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Math. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Wanas, A.K.; Alina, A.L. Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions. J. Physics: Conf. Ser. 2019, 1294, 032003. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Lee, G.Y.; Asci, M. Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials. J. Appl. Math. 2012, 2012, 264842. [Google Scholar] [CrossRef] [Green Version]
- Filipponi, P.; Horadam, A.F. Derivative sequences of Fibonacci and Lucas polynomials. Appl. Fibonacci Numbers 1991, 4, 99–108. [Google Scholar]
- Lupas, A. A guide of Fibonacci and Lucas polynomials. Octogon Math. Mag. 1999, 7, 2–12. [Google Scholar]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, W. Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roumanie 2012, 55, 95–103. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics 225; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Singh, R. On Bazilevic functions. Proc. Amer. Math. Soc. 1973, 38, 261–271. [Google Scholar]
- Babalola, K.O. On λ-pseudo-starlike functions. J. Class. Anal. 2013, 3, 137–147. [Google Scholar] [CrossRef]
- Alhabib, R.; Ranna, M.M.; Farah, H.; Salama, A.A. Some neutrosophic probability distributions. Neutrosophic Sets Syst. 2018, 22, 30–37. [Google Scholar]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afrika Math. 2016, 27, 1021–1027. [Google Scholar] [CrossRef]
- Salah, J. A note on the modified caputo’s fractional calculus derivative operator. Int. J. Pure Appl. Math. 2016, 109, 665–667. [Google Scholar] [CrossRef]
- Salah, J.; Darus, M. A Subclass of Uniformly Convex Functions Associated with a Fractional Calculus Operator Involving Caputos Fractional Differentiation. Acta Univ. Apulensis.-Math.-Inform. 2010, 24, 295–306. [Google Scholar]
- Oladipo, A.T. Bounds for Poisson and Neutrosophic Poisson Distributions Associated with Chhebyshiev Polynomials. Palest. J. Math. 2021, 10, 169–174. [Google Scholar]
- Wanas, A.K.; Sokol, J. Applications Poisson Distribution and Ruscheweyh Derivative Operator for Bi-univalent Fumctions. Kragujev. J. Math. 2024, 48, 89–97. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santhiya, S.; Thilagavathi, K. Applications of the Neutrosophic Poisson Distribution for Bi-Univalent Functions Involving the Modified Caputo’s Derivative Operator. Fractal Fract. 2023, 7, 35. https://doi.org/10.3390/fractalfract7010035
Santhiya S, Thilagavathi K. Applications of the Neutrosophic Poisson Distribution for Bi-Univalent Functions Involving the Modified Caputo’s Derivative Operator. Fractal and Fractional. 2023; 7(1):35. https://doi.org/10.3390/fractalfract7010035
Chicago/Turabian StyleSanthiya, S., and K. Thilagavathi. 2023. "Applications of the Neutrosophic Poisson Distribution for Bi-Univalent Functions Involving the Modified Caputo’s Derivative Operator" Fractal and Fractional 7, no. 1: 35. https://doi.org/10.3390/fractalfract7010035
APA StyleSanthiya, S., & Thilagavathi, K. (2023). Applications of the Neutrosophic Poisson Distribution for Bi-Univalent Functions Involving the Modified Caputo’s Derivative Operator. Fractal and Fractional, 7(1), 35. https://doi.org/10.3390/fractalfract7010035