Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances
Abstract
:1. Introduction
- (1)
- The problem about FTPS and parameter identification of FOCDNs with coupling delays and unknown external disturbances was studied in this work. By using the analysis techniques of fractional calculation, some more practical controllers were obtained to ensure FTPS between the considered FOCDNs.
- (2)
- The controllers could not only estimate unknown parameters in the networks, but also overcome unknown bounded disturbances. Simultaneously, the setting time for synchronization could also be accurately estimated.
2. Preliminaries
- (1)
- V(t) is positive definite;
- (2)
- such that
3. Main Results
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, X.; Wu, J.; Jiang, T.; Wei, W. Optimal performance of networked control systems under the packet dropouts and channel noise. Isa Trans. 2015, 58, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Velmurugana, G.; Rakkiyappan, R.; Vembarasanb, V.; Cao, J.A.; Alsaedi, A. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay. Neural Netw. 2017, 86, 42–53. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zheng, S.; Yuan, L. Dynamics of Fractional-Order Digital Manufacturing Supply Chain System and Its Control and Synchronization. Fractal Fract. 2021, 5, 128. [Google Scholar] [CrossRef]
- Kottakkaran Sooppy, N.; Vijayakumar, V. Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. 2021, 44, 13615–13632. [Google Scholar]
- Anurag, S.; Sukavanam, N.; Pandey, D.N. Controllability of Semilinear Stochastic System with Multiple Delays in Control. In Proceedings of the Third International Conference on Advances in Control and Optimization of Dynamical Systems, Kanpur, India, 13–15 March 2014. [Google Scholar]
- Yang, X.; Song, Q.; Liu, Y.; Zhao, Z. Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 2015, 152, 19–26. [Google Scholar] [CrossRef]
- Kengne, R.; Tchitnga, R.; Fomethe, A.; Hammouch, Z. Neralized finite-time function projective synchronization of two fractional-order chaotic systems via a modified fractional nonsingular sliding mode surface. Commun. Numer. Anal. 2017, 2, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, N.; Zhao, Y.; Xu, C.; Wang, J. Finite-time synchronization analysis for general complex dynamical networks with hybrid couplings and time-varying delays. Nonlinear Dyn. 2017, 88, 2723–2733. [Google Scholar] [CrossRef]
- Anurag, S.; Sukavanam, N.; Pandey, D.N. Approximate Controllability of Semilinear Fractional Control Systems of Order α ∊ (1, 2]. In Proceedings of the Conference on Control and its Applications (CT), Paris, France, 8–10 July 2015; SIAM: Philadelphia, PA, USA, 2015; pp. 175–180. [Google Scholar]
- Mahmoud, G.M.; Abed-Elhameed, T.M.; Ahmed, M.E. Neralization of combination- combination synchronization of chaotic n-dimensional fractional-order dynamical systems. Nonlinear Dynam. 2016, 83, 1885–1893. [Google Scholar] [CrossRef]
- Wang, G.; Cao, J.; Lu, J. Outer synchronization between two nonidentical networks with circumstance noise. Physica A 2010, 389, 1480–1488. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R. New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential systems. Numer. Methods Partial. Differ. Equ. 2021, 37, 1072–1090. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R. Results on approximate controllability of nondensely defined fractional neutral stochastic differential systems. Numer. Methods Partial. Differ. Equ. 2020, 18. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Z. Quasi-projectivesynchronization of fractional order chaotic Systems under input saturation. Physica A 2019, 534, 122132. [Google Scholar] [CrossRef]
- Kong, F.; Zhu, Q. Fixed-Time Stabilization of Discontinuous Neutral Neural Networks with Proportional Delays via New Fixed-Time Stability Lemmas. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, H.; Zhao, W. Event-triggered stochastic synchronization in finite time for delayed semi-Markovian jump neural networks with discontinuous activations. Comput. Appl. Math. 2020, 39, 118. [Google Scholar] [CrossRef]
- Peng, X.; Wu, H.; Cao, J. Global non-fragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2123–2137. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, H.; Cao, J. Non-fragile robust finite-time synchronization for fractional-order discontinuous complex networks with multi-weights and uncertain couolping under asynchronous switching. Appl. Math. Comput. 2020, 370, 124929. [Google Scholar]
- Liang, S.; Wu, R.; Chen, L. Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Phys. A 2016, 444, 49–62. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Hu, C.; Zhang, L.; Wang, Z. Global synchronization between two fractional-order complex networks with non- delayed and delayed coupling via hybrid impulsive control. Neurocomputing 2019, 356, 31–39. [Google Scholar] [CrossRef]
- Liu, L.; Miao, S. Outer synchronization between delayed coupling networks with different dynamics and uncertain parameters. Phys. A Stat. Mech. Appl. 2018, 512, 890–901. [Google Scholar] [CrossRef]
- Li, R.; Wu, H.; Cao, J. Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations. Acta Math. Sci. 2022, 42, 737–754. [Google Scholar] [CrossRef]
- Li, Y.; Kao, Y.; Wang, C.; Xia, H. Finite-time synchronization of delayed fractional-order heterogeneous complex networks. Neurocomputing 2020, 384, 368–375. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Rajchakit, G.; Alsaadi, F.E. Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay. Neurocomputing 2018, 317, 110–126. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, S. Adaptive synchronization of fractional-order complex-valued coupled neural networks via direct error method. Neurocomputing 2022, 486, 114–122. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Jiang, H.; Alsaedi, A. Finite-time synchronization of fractional-order complex networks via hybrid feedback control. Neurocomputing 2018, 320, 69–75. [Google Scholar] [CrossRef]
- Aadhithiyan, S.; Raja, R.; Zhu, Q.; Alzabut, J.; Niezabitowski, M.; Lim, C.P. Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control. Chaos Solitons Fractals 2021, 147, 110853. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, H.; Cao, J. Pinning exponential cluster synchronization for fractional-order complex dynamical networks with switching topology and mode-dependent impulses. Neurocomputing 2021, 428, 182–194. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, Z. Impulsive synchronization of fractional-order complex-variable dynamical network. Adv. Differ. Equ. 2021, 2021, 373. [Google Scholar] [CrossRef]
- Huang, D. Synchronization-based estimation of all parameters of chaotic systems from time series. Phys. Rev. E 2004, 69, 067201. [Google Scholar] [CrossRef]
- Wonga, W.; Li, H.; Leung, S. Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4877–4890. [Google Scholar] [CrossRef]
- Geng, L.; Xiao, R. Outer synchronization and parameter identification approach to the resilient recovery ofsupply network with uncertainty. Physica A 2017, 482, 407–421. [Google Scholar] [CrossRef]
- Pei, J.; Fan, H.; Zhao, Y.; Feng, J. Adaptive Synchronization of Fractional-Order Nonlinearly Coupled Complex Networks With Time Delay and External Disturbances. IEEE ACCESS 2018, 6, 4653–4663. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Ma, T. Parameter estimation and topology identification of uncertain general fractional-order complex dynamical networks with time delay. IEEE/CAA J. Autom. Sinica. 2016, 3, 295–303. [Google Scholar]
- Li, H.; Cao, J.; Jiang, H.; Alsaedi, A. Finite-time synchronization and parameter identification of Uncertain fractional-order complex networks. Physica A 2019, 533, 122027. [Google Scholar] [CrossRef]
- Selvaraj, P.; Kwon, O.M.; Lee, S.H.; Sakthivel, R. Cluster synchronization of fractional-order complex networks via uncertainty and disturbance estimator-based modified repetitive control. J. Frankl. Inst. 2021, 358, 9951–9974. [Google Scholar] [CrossRef]
- Du, H. Modified function projective synchronization between two fractional-order complex dynamical networks with un- known parameters and unknown bounded external disturbances. Physica A 2019, 526, 120997. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Zuo, Z.; Yang, C.; Wang, Y. A unified framework of exponential synchronization for complex networks with time-varying delays. Phys. Lett. Sect. A 2010, 374, 1989–1999. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Wang, H. Mittag-Leffler stability of fractional-order hopfield neural networks. Nonlin. Anal. Hybrid Syst. 2015, 16, 104–121. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zheng, S.; Cui, L. Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances. Fractal Fract. 2022, 6, 298. https://doi.org/10.3390/fractalfract6060298
Wang S, Zheng S, Cui L. Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances. Fractal and Fractional. 2022; 6(6):298. https://doi.org/10.3390/fractalfract6060298
Chicago/Turabian StyleWang, Shuguo, Song Zheng, and Linxiang Cui. 2022. "Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances" Fractal and Fractional 6, no. 6: 298. https://doi.org/10.3390/fractalfract6060298
APA StyleWang, S., Zheng, S., & Cui, L. (2022). Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances. Fractal and Fractional, 6(6), 298. https://doi.org/10.3390/fractalfract6060298