A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations
Abstract
:1. Introduction
2. New CRUS-WENO Scheme
3. Numerical Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henrick, A.K.; Aslam, T.D.; Powers, J.M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 2005, 207, 542–567. [Google Scholar] [CrossRef]
- Jiang, G.-S.; Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Osher, S.; Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Borges, R.; Carmona, M.; Costa, B.; Don, S.W. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 2008, 227, 3191–3211. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.T. A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 2013, 54, 603–621. [Google Scholar] [CrossRef]
- Shu, C.-W. High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 2009, 51, 82–126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.T.; Shu, C.-W. Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 2009, 5, 836–848. [Google Scholar]
- Balsara, D.S.; Shu, C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 2000, 160, 405–452. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Qiu, J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 2016, 318, 110–121. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Jiang, L.; Shan, H.; Liu, C. Weighted compact scheme for shock capturing. Int. J. Comput. Fluid Dyn. 2001, 15, 147–155. [Google Scholar] [CrossRef]
- Ghosh, D.; Baeder, J.D. Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 2012, 34, 1678–1706. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F.; Guo, Y. A fifth order alternative Compact-WENO finite difference scheme for compressible Euler equations. J. Comput. Phys. 2019, 397, 108873. [Google Scholar] [CrossRef]
- Alfaro, M.; Droniou, J. General fractal conservation laws arising from a model of detonations in gases. Appl. Math. Res. Express 2012, 2, 127–151. [Google Scholar] [CrossRef] [Green Version]
- Saeedian, M.; Khalighi, M.; Azimi-Tafreshi, N.; Jafari, G.R.; Ausloos, M. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Phys. Rev. E 2017, 95, 022409. [Google Scholar] [CrossRef] [Green Version]
- Safdari, H.; Kamali, M.Z.; Shirazi, A.; Khalighi, M.; Jafari, G.; Ausloos, M. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions. PLoS ONE 2016, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Alibaud, N.; Azerad, P.; Isèbe, D.; be, D. A non-monotone conservation law for dune morphodynamics. Differ. Integral Equ. 2007, 23, 155–188. [Google Scholar]
- Fowler, A.C. Evolution equations for dunes and drumlins. Rev. R. Acad. Cience Ser. A Mat. 2002, 96, 377–387. [Google Scholar]
- Al-Smadi, M.; Arqub, O.A.; Hadid, S. Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 2020, 95, 105205. [Google Scholar] [CrossRef]
- Azerad, P.; Bouharguane, A.; Crouzet, J.-F. Simultaneous denoising and enhancement of signals by a fractal conservation law. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 867–881. [Google Scholar] [CrossRef] [Green Version]
- Kaur, L.; Wazwaz, A.-M. Dynamical analysis of lump solutions for (3 + 1) dimensional generalized KP-Boussinesq equation and Its dimensionally reduced equations. Phys. Scr. 2018, 93, 075203. [Google Scholar] [CrossRef]
- Kaur, L.; Wazwaz, A.-M. Bright-dark lump wave solutions for a new form of the (3 + 1)-dimensional BKP-Boussinesq equation. Rom. Rep. Phys. 2019, 71, 1–11. [Google Scholar]
- Wazwaz, A.-M.; Kaur, L. New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 2019, 97, 83–94. [Google Scholar] [CrossRef]
- Hosseini, K.; Kaur, L.; Mirzazadeh, M.; Baskonus, H.M. 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative. Opt. Quant. Electron. 2021, 53, 1–10. [Google Scholar] [CrossRef]
- Alibaud, N.; Droniou, J.; Vovelle, J. Occurrence and non-appearance of shocks in fractal Burgers equations. J. Hyperbol. Differ. Eq. 2007, 4, 479–499. [Google Scholar] [CrossRef]
- Droniou, J. A numerical method for fractal conservation laws. Math. Comp. 2010, 79, 95–124. [Google Scholar] [CrossRef] [Green Version]
- Briani, M.; Natalini, R. Asymptotic high-order schemes for integro-differential problems arising in markets with jumps. Commun. Math. Sci. 2006, 4, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Matache, A.; Schwab, C.; Wihler, T.P. Fast numerical solution of parabolic integrodifferential equations with applications in finance. SIAM J. Sci. Comput. 2005, 27, 369–393. [Google Scholar] [CrossRef] [Green Version]
- Cifani, S.; Jakobsen, E.R.; Karlsen, K.H. The discontinuous Galerkin method for fractal conservation laws. IMA J. Numer. Anal. 2011, 31, 1090–1122. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Hesthaven, J.S. Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 2014, 52, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Safdari, H.; Rajabzadeh, M.; Khalighi, M. Solving a non-linear fractional convection-diffusion equation using local discontinuous Galerkin method. Appl. Numer. Math. 2021, 165, 22–34. [Google Scholar] [CrossRef]
- Deng, W.H.; Du, S.D.; Wu, Y.J. High order finite difference WENO schemes for fractional differential equations. Appl. Math. Lett. 2013, 26, 362–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, W.H.; Zhu, J. A new sixth-order finite difference WENO scheme for fractional differential equations. J. Sci. Comput. 2021, 87, 1–15. [Google Scholar] [CrossRef]
- Shu, C.-W. Total-variation-diminishing time discretizations. SIMA J. Sci. Stat. Comput. 1988, 9, 1073–1084. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaber, M. On the finite Caputo and finite Riesz derivatives. Electron. J. Theoret. Phys. 2006, 3, 81–95. [Google Scholar]
- Ferreira, L.C.F.; Villamizar-Roa, E.J. Fractional Navier–Stokes equations and a Hlder-type inequality in a sum of singular spaces. Nonlinear Anal. 2011, 74, 5618–5630. [Google Scholar] [CrossRef]
- Muslih, S.I.; Agrawal, O.P. Riesz Fractional Derivatives and Fractional Dimensional Space. Internat. J. Theoret. Phys. 2010, 49, 270–275. [Google Scholar] [CrossRef]
- Wu, J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Commun. Math. Phys. 2005, 263, 803–831. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, F.; Turner, I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34, 200–218. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Shu, C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Springer: Berlin/Heidelberg, Germany, 1998; pp. 325–432. [Google Scholar]
- Castro, M.; Costa, B.; Don, S.W. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 2011, 230, 1766–1792. [Google Scholar] [CrossRef]
= 0.2 | ||||||||
---|---|---|---|---|---|---|---|---|
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 5.25 × 10 | 1.21 × 10 | 6.55 × 10 | 2.23 × 10 | ||||
20 | 8.39 × 10 | 5.97 | 2.79 × 10 | 5.44 | 1.34 × 10 | 8.93 | 6.36 × 10 | 8.46 |
30 | 9.23 × 10 | 5.44 | 3.82 × 10 | 4.90 | 7.87 × 10 | 6.99 | 3.69 × 10 | 7.02 |
40 | 2.15 × 10 | 5.06 | 6.98 × 10 | 5.91 | 1.20 × 10 | 6.53 | 6.30 × 10 | 6.14 |
CRUS-WENO (2) | CRUS-WENO (3) | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 5.25 × 10 | 1.21 × 10 | 5.25 × 10 | 1.21 × 10 | ||||
20 | 8.39 × 10 | 5.97 | 2.79 × 10 | 5.44 | 8.39 × 10 | 5.97 | 2.79 × 10 | 5.44 |
30 | 9.22 × 10 | 5.45 | 3.80 × 10 | 4.92 | 9.22 × 10 | 5.45 | 3.80 × 10 | 4.92 |
40 | 2.16 × 10 | 5.05 | 6.72 × 10 | 6.02 | 2.16 × 10 | 5.05 | 6.73 × 10 | 6.02 |
= 0.4 | ||||||||
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 8.74 × 10 | 1.94 × 10 | 2.70 × 10 | 1.01 × 10 | ||||
20 | 1.46 × 10 | 5.90 | 4.80 × 10 | 5.34 | 3.55 × 10 | 9.57 | 1.38 × 10 | 9.51 |
30 | 1.55 × 10 | 5.55 | 7.58 × 10 | 4.55 | 2.15 × 10 | 6.91 | 8.82 × 10 | 6.78 |
40 | 2.70 × 10 | 6.07 | 1.66 × 10 | 5.27 | 4.43 × 10 | 5.50 | 5.15 × 10 | 1.87 |
CRUS-WENO (2) | CRUS-WENO (3) | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 8.74 × 10 | 1.94 × 10 | 8.74 × 10 | 1.94 × 10 | ||||
20 | 1.46 × 10 | 5.90 | 4.80 × 10 | 5.34 | 1.46 × 10 | 5.90 | 4.80 × 10 | 5.34 |
30 | 1.55 × 10 | 5.55 | 7.57 × 10 | 4.55 | 1.55 × 10 | 5.55 | 7.57 × 10 | 4.55 |
40 | 2.69 × 10 | 6.07 | 1.66 × 10 | 5.28 | 2.69 × 10 | 6.07 | 1.66 × 10 | 5.28 |
= 0.8 | ||||||||
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 4.91 × 10 | 1.16 × 10 | 1.53 × 10 | 9.55 × 10 | ||||
20 | 8.76 × 10 | 5.81 | 2.20 × 10 | 5.72 | 1.93 × 10 | 9.63 | 1.21 × 10 | 9.63 |
30 | 7.82 × 10 | 5.96 | 3.17 × 10 | 4.78 | 5.95 × 10 | 8.58 | 2.21 × 10 | 9.87 |
40 | 1.42 × 10 | 5.94 | 7.75 × 10 | 4.90 | 8.01 × 10 | 6.97 | 2.96 × 10 | 6.98 |
CRUS-WENO (2) | CRUS-WENO (3) | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 4.91 × 10 | 1.16 × 10 | 4.91 × 10 | 1.16 × 10 | ||||
20 | 8.76 × 10 | 5.81 | 2.20 × 10 | 5.72 | 8.76 × 10 | 5.81 | 2.20 × 10 | 5.72 |
30 | 7.82 × 10 | 5.96 | 3.17 × 10 | 4.78 | 7.82 × 10 | 5.96 | 3.17 × 10 | 4.78 |
40 | 1.42 × 10 | 5.94 | 7.75 × 10 | 4.90 | 1.42 × 10 | 5.94 | 7.75 × 10 | 4.90 |
= 0.2 | ||||||||
---|---|---|---|---|---|---|---|---|
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 8.10 × 10 | 3.33 × 10 | 8.43 × 10 | 3.41 × 10 | ||||
20 | 1.62 × 10 | 5.64 | 4.29 × 10 | 6.28 | 1.60 × 10 | 5.72 | 4.39 × 10 | 6.28 |
30 | 2.26 × 10 | 4.86 | 1.29 × 10 | 2.96 | 4.33 × 10 | 3.21 | 1.94 × 10 | 2.01 |
40 | 5.49 × 10 | 4.92 | 2.47 × 10 | 5.75 | 9.19 × 10 | 5.39 | 3.66 × 10 | 5.80 |
CRUS-WENO (2) | CRUS-WENO (3) | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 7.42 × 10 | 3.20 × 10 | 7.32 × 10 | 3.19 × 10 | ||||
20 | 2.08 × 10 | 5.16 | 7.05 × 10 | 5.50 | 2.20 × 10 | 5.06 | 8.09 × 10 | 5.30 |
30 | 2.30 × 10 | 5.43 | 1.29 × 10 | 4.18 | 2.32 × 10 | 5.55 | 1.30 × 10 | 4.52 |
40 | 5.49 × 10 | 4.98 | 2.47 × 10 | 5.76 | 5.49 × 10 | 5.00 | 2.47 × 10 | 5.77 |
= 0.6 | ||||||||
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 8.11 × 10 | 3.33 × 10 | 8.31 × 10 | 3.41 × 10 | ||||
20 | 1.43 × 10 | 5.83 | 5.21 × 10 | 6.00 | 1.53 × 10 | 5.76 | 4.60 × 10 | 6.21 |
30 | 2.17 × 10 | 4.65 | 1.34 × 10 | 3.35 | 4.94 × 10 | 2.79 | 2.01 × 10 | 2.05 |
40 | 4.95 × 10 | 5.13 | 1.88 × 10 | 6.84 | 9.79 × 10 | 5.62 | 3.82 × 10 | 5.76 |
grid points | error | order | error | order | error | order | error | order |
10 | 7.97 × 10 | 3.35 × 10 | 8.07 × 10 | 3.33 × 10 | ||||
20 | 2.44 × 10 | 5.03 | 8.70 × 10 | 5.27 | 2.74 × 10 | 4.88 | 1.02 × 10 | 5.03 |
30 | 2.27 × 10 | 5.86 | 1.20 × 10 | 4.89 | 2.30 × 10 | 6.11 | 1.20 × 10 | 5.26 |
40 | 4.95 × 10 | 5.30 | 1.88 × 10 | 6.44 | 4.95 × 10 | 5.34 | 1.88 × 10 | 6.46 |
= 0.8 | ||||||||
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 7.47 × 10 | 2.97 × 10 | 7.60 × 10 | 3.25 × 10 | ||||
20 | 3.88 × 10 | 4.27 | 1.85 × 10 | 4.01 | 1.56 × 10 | 5.60 | 4.85 × 10 | 6.07 |
30 | 2.54 × 10 | 6.73 | 1.15 × 10 | 6.85 | 5.41 × 10 | 2.61 | 2.09 × 10 | 2.07 |
40 | 3.49 × 10 | 6.89 | 1.92 × 10 | 6.22 | 9.58 × 10 | 6.02 | 3.96 × 10 | 5.79 |
CRUS-WENO (2) | CRUS-WENO (3) | |||||||
grid points | error | order | error | order | error | order | error | order |
10 | 1.39 × 10 | 3.86 × 10 | 1.65 × 10 | 4.60 × 10 | ||||
20 | 4.53 × 10 | 4.94 | 1.45 × 10 | 4.73 | 5.11 × 10 | 5.01 | 1.64 × 10 | 4.81 |
30 | 3.13 × 10 | 6.59 | 1.72 × 10 | 5.26 | 2.66 × 10 | 7.29 | 1.11 × 10 | 6.65 |
40 | 3.50 × 10 | 7.62 | 1.92 × 10 | 7.61 | 3.50 × 10 | 7.05 | 1.93 × 10 | 6.08 |
= 0.4 | ||||||||
---|---|---|---|---|---|---|---|---|
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 × 10 | 1.57 × 10 | 1.94 × 10 | 2.83 × 10 | 1.01 × 10 | ||||
20 × 20 | 2.36 × 10 | 6.06 | 4.80 × 10 | 5.34 | 2.76 × 10 | 10.00 | 1.38 × 10 | 9.51 |
30 × 30 | 2.39 × 10 | 5.64 | 7.58 × 10 | 4.55 | 1.51 × 10 | 7.16 | 8.82 × 10 | 6.78 |
40 × 40 | 4.09 × 10 | 6.14 | 1.66 × 10 | 5.27 | 3.14 × 10 | 5.47 | 5.32 × 10 | 1.76 |
grid points | error | order | error | order | error | order | error | order |
10 × 10 | 1.57 × 10 | 1.94 × 10 | 1.57 × 10 | 1.94 × 10 | ||||
20 × 20 | 2.36 × 10 | 6.06 | 4.82 × 10 | 5.33 | 2.36 × 10 | 6.06 | 4.84 × 10 | 5.33 |
30 × 30 | 2.40 × 10 | 5.64 | 7.73 × 10 | 4.52 | 2.40 × 10 | 5.64 | 7.81 × 10 | 4.50 |
40 × 40 | 4.12 × 10 | 6.12 | 1.86 × 10 | 4.96 | 4.13 × 10 | 6.11 | 2.03 × 10 | 4.69 |
= 0.8 | ||||||||
CRUS-WENO (1) | WENO-JS | |||||||
grid points | error | order | error | order | error | order | error | order |
10 × 10 | 8.83 × 10 | 1.16 × 10 | 1.56 × 10 | 9.55 × 10 | ||||
20 × 20 | 1.41 × 10 | 5.97 | 2.20 × 10 | 5.72 | 1.50 × 10 | 10.02 | 1.21 × 10 | 9.63 |
30 × 30 | 1.21 × 10 | 6.05 | 3.17 × 10 | 4.78 | 4.11 × 10 | 8.87 | 2.21 × 10 | 9.87 |
40 × 40 | 2.15 × 10 | 6.01 | 7.75 × 10 | 4.90 | 5.20 × 10 | 7.18 | 2.96 × 10 | 6.98 |
CRUS-WENO (2) | CRUS-WENO (3) | |||||||
grid points | error | order | error | order | error | order | error | order |
10 × 10 | 8.83 × 10 | 1.16 × 10 | 8.83 × 10 | 1.16 × 10 | ||||
20 × 20 | 1.41 × 10 | 5.97 | 2.20 × 10 | 5.72 | 1.41 × 10 | 5.97 | 2.20 × 10 | 5.72 |
30 × 30 | 1.21 × 10 | 6.05 | 3.17 × 10 | 4.78 | 1.21 × 10 | 6.05 | 3.17 × 10 | 4.78 |
40 × 40 | 2.15 × 10 | 6.01 | 7.75 × 10 | 4.90 | 2.15 × 10 | 6.01 | 7.75 × 10 | 4.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, J. A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations. Fractal Fract. 2022, 6, 294. https://doi.org/10.3390/fractalfract6060294
Zhang Y, Zhu J. A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations. Fractal and Fractional. 2022; 6(6):294. https://doi.org/10.3390/fractalfract6060294
Chicago/Turabian StyleZhang, Yan, and Jun Zhu. 2022. "A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations" Fractal and Fractional 6, no. 6: 294. https://doi.org/10.3390/fractalfract6060294
APA StyleZhang, Y., & Zhu, J. (2022). A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations. Fractal and Fractional, 6(6), 294. https://doi.org/10.3390/fractalfract6060294