Oscillators Based on Fractional-Order Memory Elements
Abstract
:1. Introduction
2. Preliminaries
2.1. Definition of Fractional-Order Operator
2.2. Numerical Solution of Fractional Differential Equation
3. Fractional-Order Memristive Elements
3.1. Memristor
3.2. Memcapacitor
3.3. Meminductor
4. Models of the Fractional-Order Chaotic Systems
4.1. Memcapacitor–Meminductor Oscillator
4.2. Memristor–Memcapacitor–Meminductor Oscillator
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Z.; Tian, H.; Chen, G.; Chua, L.O. What are Memristor, Memcapacitor, and Meminductor? IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 402–406. [Google Scholar] [CrossRef] [Green Version]
- Chua, L.O. Memristor: The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.O.; Sung, M.K. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Ventra, M.D.; Pershin, Y.V.; Chua, L.O. Circuit elements with memory: Memristors, memcapacitors and meminductors. Proc. IEEE 2009, 97, 1717–1724. [Google Scholar] [CrossRef] [Green Version]
- Biolek, D.; Biolek, Z.; Biolkova, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of the 2009 European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 249–252. [Google Scholar] [CrossRef]
- Romero, F.J.; Ohata, A.; Toral-Lopez, A.; Godoy, A.; Morales, D.P.; Rodriguez, N. Memcapacitor and Meminductor Circuit Emulators: A Review. Electronics 2021, 10, 1225. [Google Scholar] [CrossRef]
- Khalil, N.A.; Fouda, M.E.; Said, L.A.; Radwan, A.G.; Soliman, A.M. A general emulator for fractional-order memristive elements with multiple pinched points and application. AEU—Int. J. Electron. Commun. 2020, 124, 153338. [Google Scholar] [CrossRef]
- Khalil, N.A.; Hezayyin, H.G.; Said, L.A.; Madian, A.H.; Radwan, A.G. Active emulation circuits of fractional-order memristive elements and its applications. AEU—Int. J. Electron. Commun. 2021, 138, 153855. [Google Scholar] [CrossRef]
- Cam Taskiran, Z.; Sagbas, M.; Ayten, U.; Sedef, H. A New Universal Mutator Circuit for Memcapacitor and Meminductor Elements. AEU—Int. J. Electron. Commun. 2020, 119, 153180. [Google Scholar] [CrossRef]
- Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D. Nonlinear Noninteger Order Circuits and Systems: An Introduction; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Elwakil, A.S. Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 2010, 10, 40–50. [Google Scholar] [CrossRef]
- Schafer, I.; Kruger, K. Modelling of lossy coils using fractional derivatives. J. Phys. D Appl. Phys. 2008, 41, 045001. [Google Scholar] [CrossRef]
- Khalil, N.A.; Said, L.A.; Radwan, A.G.; Soliman, A.M. General fractional order mem-elements mutators. Microelectron. J. 2019, 90, 211–221. [Google Scholar] [CrossRef]
- Abdelouahab, M.S.; Lozi, R.; Chua, L.O. Memfractance: A Mathematical Paradigmfor Circuit Elements with Memory. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2014, 24, 1430023–1430029. [Google Scholar] [CrossRef] [Green Version]
- Coopmans, C.; Petráš, I.; Chen, Y. Analogue Fractional-Order Generalized Memristive Devices. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009; Volume 4, pp. 1127–1136. [Google Scholar] [CrossRef]
- Guo, Z.; Si, G.; Diao, L.; Jia, L.; Zhang, Y. Generalized modeling of the fractional-order memcapacitor and its character analysis. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 177–189. [Google Scholar] [CrossRef]
- Yang, N.N.; Xu, C.; Wu, C.; Jia, R.; Liu, C. Fractional-order cubic nonlinear flux-controlled memristor: Theoretical analysis, numerical calculation and circuit simulation. Nonlinear Dyn. 2019, 97, 33–44. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, J. Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 2020, 100, 2353–2364. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Lopes, A.M. Multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res. 2020, 25, 147–157. [Google Scholar] [CrossRef]
- Tenreiro Machado, J. Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Petráš, I. Fractional-Order Nonlinear Systems; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Petráš, I. Fractional Order Systems: Modeling and Control Applications; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Westerlund, S.; Ekstam, L. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839. [Google Scholar] [CrossRef]
- Lopez, C.S.; Gomez, V.H.C.; Aguilar, M.A.C.; Lopez, F.E.M. PID controller design based on memductor. Int. J. Electron. Commun. 2019, 101, 9–14. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Ventra, M.D. Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 2010, 46, 517–518. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Mou, J.; Liu, J.; Ma, C.; Yang, F.; Zhao, X. A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn. 2020, 100, 2859–2876. [Google Scholar] [CrossRef]
- Innocenti, G.; Liu, X.; Bi, X.; Yan, H.; Mou, J. A Chaotic Oscillator Based on Meminductor, Memcapacitor, and Memristor. Complexity 2021, 2021, 7223557. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Jin, C.; Iu, H.H.C.; Yu, S. Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dyn. 2019, 96, 161–173. [Google Scholar] [CrossRef]
- Radwan, A.G.; Fouda, M.E. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Petráš, I.; Chen, Y. Fractional-order circuit elements with memory. In Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 28–31 May 2012; pp. 552–558. [Google Scholar] [CrossRef]
- Itoh, M.; Chua, L.O. Memristor oscillation. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 2008, 18, 3183–3206. [Google Scholar] [CrossRef]
- Petráš, I. Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 975–979. [Google Scholar] [CrossRef]
- Westerlund, S. Dead Matter Has Memory! Causal Consulting: Kalmar, Sweden, 2002. [Google Scholar]
- Wang, S.F.; Ye, A. Dynamical Properties of Fractional-Order Memristor. Symmetry 2020, 12, 437. [Google Scholar] [CrossRef] [Green Version]
- Petráš, I. “Comments on “Chaotic oscillator based on memcapacitor and meminductor” (Nonlinear Dyn, DOI: 10.1007/s11071-019-04781-5). Nonlinear Dyn. 2020, 102, 2945–2950. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petráš, I. Oscillators Based on Fractional-Order Memory Elements. Fractal Fract. 2022, 6, 283. https://doi.org/10.3390/fractalfract6060283
Petráš I. Oscillators Based on Fractional-Order Memory Elements. Fractal and Fractional. 2022; 6(6):283. https://doi.org/10.3390/fractalfract6060283
Chicago/Turabian StylePetráš, Ivo. 2022. "Oscillators Based on Fractional-Order Memory Elements" Fractal and Fractional 6, no. 6: 283. https://doi.org/10.3390/fractalfract6060283