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Abstract: The properties of a fractional-order memristor is studied, and the influences of parameters
are analyzed and compared. The results reflect that the resistance value of a fractional-order memristor
can be affected by fraction-order, frequency, the switch resistor ratio, average mobility and so on.
In addition, the circuit of a fractional-order memristor that is serially connected and connected in
parallel with inductance and capacitance are studied. Then, the current–voltage characteristics of a
simple series one-port circuits that are composed of a fractional-order memristor and a capacitor,
or composed of a fractional-order memristor and a inductor are studied separately. The results
demonstrate that at the periodic excitation, the memristor in the series circuits will have capacitive
properties or inductive properties as the fractional order changes, the dynamical properties can be
used in a memristive circuit.

Keywords: fraction-order memristor; device property; serial and parallel; Dynamical analysis

1. Introduction

Fractional calculus, an important branch of mathematics, was born in 1695 and appeared almost
simultaneously to classic calculus. Fractional calculus, in a narrow sense, mainly includes fractional
differentials and fractional integrals, and it broadly includes fractional differences and fractional sum
quotients. Since the theory of fractional calculus has been successfully applied to various fields in
recent years, people have gradually discovered that fractional calculus can describe some non-classical
phenomena in the fields of natural science and engineering applications. The current popular areas of
fractional calculus include fractional numerical algorithms and fractional synchronization.

The successful development of a memristor has provided a new avenue for electronic technology
and information technology, and it is expected to realize new functions. Their non-volatility makes
memristors play a key role in memory, neural networks, and pattern recognition. Chua firstly defined
a memristor (MR) in 1971 [1], and HP Labs reported the successful fabrication of nanoscale memristive
devices [2]. A memristor is the fourth two-terminal fundamental circuit element with information
storage ability and, as such, has attracted immense worldwide interest from both industry and
academia [3]. Applications of MRs are used in many fields such as filter design, programmable
logic, biological systems, and neural systems such as neural synaptic weighting with a pulse-based
memristor circuit [4], Boolean logic operations and computing circuits based on memristors [5],
and the voltage–current relationship of active memristors and frequency [6]. A generalized boundary
condition memristor model was proposed in [7]. Research on a coupling behavior-based series-parallel
flux-controlled memristor has been also conducted [8–10]. Two types of nanoscale nonlinear memristor
models and their series-parallel circuit have been investigated [11], as have the characteristics of
a memristor and its application in the circuit design [12–17]. First order mem-circuits have been
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studied [18]. Research on the equivalent analysis circuit of a memristors network [19], memristor-based
adaptive coupling for consensus and synchronization [20–22], and coupling as a third relation in
memristive systems have been proposed [23–30]. However, there is less research on fractional-order
memristor, and there has been no literature physical background. In this paper, the analytical
solution of parameter expression is derived by using a fractional-order memristor model in Section 2.
The properties of fractional-order memristor is studied in Section 3, The results reflect that the resistance
value of a fractional-order memristor can be affected by fraction-order, frequency, the switch resistor
ratio, average mobility, and so on; additionally, the circuit of Mα serially connected and connected in
parallel with Mα, L and C are also studied separately. Finally, the conclusion is presented in Section 4.

2. The Fractional Derivative

The α order Caputo derivative is defined as:

Dα
t x(t) =

1
Γ(m− a)

∫ t

0

x(m)(τ)

(t− τ)1+α−m dτ. (1)

where m = [α] + 1 and Γ(m) is the Euler’s gamma function; when α ∈ (0, 1):

Dα
t eλt = λαeλt. (2)

Then, we obtain:
Dα

t eiωt = (iω)αeiωt. (3)

The real part and imaginary part of the sine and cosine functions can be obtained by separating
Equation (3).

Some basic properties of Caputo fractional calculus are as follows.

(1) aDα
t [u f (t) + vg(t)] = uaDα

t f (t) + vaDα
t g(t)

(2) aDα
t aDβ

t f (t) = aDβ
t aDα

t f (t) = aDα+β
t f (t),

(3) L
a Dα

t K = Kt−α
Γ(1−α) , α > 0

In which the constant K , 0, and the Caputo FD is C
a Dα

t K = 0, α > 0.

3. The Model of Fractional-Order Memristor

The structure of an MR and its symbol are shown in Figure 1.
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The mathematical model are defined as follows

v(t) = Mα(x)i(t). (4a)

Mα(x) = RONx + (1− x)ROFF. (4b)

x(t) = k0D−αt i(t). (4c)

In which D−αt is the α integral of x(t), Mα(x) is a fractional-order memristor when supposing
the input current i(t) = Im sin(ωt), switch resistor RON = 100 Ω and ROFF = 10 kΩ, the current
Im = 0.2 mA D = 10 nm, the average mobility uv = 10−14 m.s−1V−1, the length x0 = 0.01, and the
frequency ω = 5 rad/s. The transient current curve and the voltage curve of the memristor are shown
in Figure 2a,b respectively.

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 12 

 

)()()( tixMtv α= . (4a) 

OFFON RxxRxM )1()( −+=α . (4b) 

)()( 0 tiDktx t
α−= . (4c) 

In which α−
tD  is the α  integral of )(tx , )(xM α  is a fractional-order memristor when 

supposing the input current )sin()( tIti m ω= , switch resistor Ω= 100ONR  and Ω= kROFF 10 ，

the current mAIm 2.0=  10=D nm, the average mobility 1410 −=vu m.s-1V-1, the length 0x = 
0.01, and the frequency srad /5=ω . The transient current curve and the voltage curve of the 
memristor are shown in Figure 2a,b respectively. 

0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-4

t/s

i(t
)/A

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

t/s

v(
t)/

V

 

Figure 2. (a) The transient current curve and (b) the transient voltage curve. 

The simulation result for when α  has different values is shown in Figure 3a. It was found the 
an MR possesses memristive properties, with pinched hysteresis loops forming inclined “8”, and 
this property can be used to realize signal storage or computing. From Figure 3b, it can be seen that 
the smaller the value of fractional order, the greater the dynamic range amplitude of the resistance 
was. 

-5 -4 -3 -2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-4

v(t)/V

i(t
)/A

 

 
a=0.98
a=0.5
a=0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

1.5

2

2.5
x 104

t/s

M
(t)

/ Ω

 

 
a=0.98
a=0.5
a=0.1

 

Figure 2. (a) The transient current curve and (b) the transient voltage curve.

The simulation result for when α has different values is shown in Figure 3a. It was found the an
MR possesses memristive properties, with pinched hysteresis loops forming inclined “8”, and this
property can be used to realize signal storage or computing. From Figure 3b, it can be seen that the
smaller the value of fractional order, the greater the dynamic range amplitude of the resistance was.
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Figure 3. (a) The curves of v− i and (b) the curves of M(t).

The characteristic curves of a fractional-order memristor with different parameters are shown in
Figure 4. From Figure 4a, it can be seen that the difference of resistance decreased as the frequency ω
increased. From Figure 4b, it can be seen that the switch resistor increased and the curves of v− i were
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inclined to right. From Figure 4c, it can be seen that the difference of resistance increased as the value
of µv increased.
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4. The Properties of Fractional-Order Memristor

The fractional-order memristor in six cases of connection, serially and in parallel, are discussed in
this section.

4.1. The Two Fractional-Order Memristors in Serial

The serial circuit of two fractional-order memristors is shown in Figure 5.

Symmetry 2019, 11, x FOR PEER REVIEW 4 of 12 

 

Figure 3. (a) The curves of iv −  and (b) the curves of )(tM . 

The characteristic curves of a fractional-order memristor with different parameters are shown 
in Figure 4. From Figure 4a, it can be seen that the difference of resistance decreased as the frequency 
ω  increased. From Figure 4b, it can be seen that the switch resistor increased and the curves of 
iv − were inclined to right. From Figure 4c, it can be seen that the difference of resistance increased 

as the value of vμ  increased.  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-4

v(t)/V

i(t
)/A

 

 
w=5rad/s
w=10rad/s
w=15rad/s

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-4

v(t)/V

i(t
)/A

 

 
Roff/Ron=100
Roff/Ron=150
R0ff/Ron=200

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-4

v(t)/V

i(t
)/A

 

 

uv=1f
uv=2f
uv=3f

Figure 4. The iv − curves of a fractional-order MR ( 98.0=α ). (a) Varied with frequencyω ; (b) 
varied with different switch resistance (ROFF/RON); and (c) varied with different average mobility 

values vμ . 

3. The Properties of Fractional-Order Memristor 

The fractional-order memristor in six cases of connection, serially and in parallel, are discussed 
in this section.  

3.1. The Two Fractional-Order Memristors in Serial 

The serial circuit of two fractional-order memristors is shown in Figure 5. 

 

Figure 5. Serial circuit of two fractional-order memristors. 

By choosing the current )sin()( tIti m ω= , based on the Caputo differential, Euler’s formulas, 
and the separating variables method, we obtain: 

]sin[)()( 11 tDkItikDtx tt ωαα −− == . (5) 

Figure 5. Serial circuit of two fractional-order memristors.

By choosing the current i(t) = Im sin(ωt), based on the Caputo differential, Euler’s formulas,
and the separating variables method, we obtain:

.
x(t) = kD1−α

t i(t) = kI[D1−α
t sinωt]. (5)

When t >> 1, Equation (11) can be simplified as:

.
x(t) ≈ kIω1−α sin(ωt +

1− α
2

π). (6)

Then, the two sides of Equation (12) can be integrated to get:

x(t) ≈ x(0) +
kI
ωα

[cos(
1− α

2
π) − cos(ωt +

1− α
2

π)]. (7)
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By choosing the parameters M1(uv = 10−14 m.s−1V−1), M2(uv = 2× 10−14 m.s−1V−1), and α = 0.98,
one can obtain the curves of v− i that are are shown in Figure 6.
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It was found the two serial MRs also possessed the memristive properties with pinched hysteresis
loops behaving as inclined “8”, as shown in Figure 6. It can be seen that the values of M1, M2 and M12
are increased with the value of v(t), and the value of M12 is bigger than those of M1 and M2.

4.2. The Circuit of Fractional-Order MR in Parallel

The circuit of two fractional-order MRs in parallel is shown in Figure 7. According to Equations (4b)
and (4c), it be written as:

Mα(x)
.
x(t) = k0D−αt Mα(x)i(t). (8a)

Mα(x)
.
x(t) = k0D−αt v(t). (8b)
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By choosing the voltage v(t) = Vm sin(ωt), one can obtain:

Mα(x)
.
x(t) = k0VmD1−α

t sin(ωt)
.
x(t) = kD1−α

t i(t) = kI[D1−α
t sinωt]. (9)

When t >> 1,Equation (11) can be simplified as:

Mα(x)
.
x(t) ≈ k0Vmω

1−α sin(ωt +
1− α

2
π). (10)
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and
[RONx + ROFF(1− x)] · (x− x0) ≈

kVm

ωα
[cos(

1− α
2

π) − cos(ωt +
1− α

2
π)]. (11)

(RON −ROFF)x2 + [(1 + x0)ROFF −RONx0]x =
kVm

ωα
[cos(

1− α
2

π) − cos(ωt +
1− α

2
π)] + ROFFx0. (12)

Then, one can set A = RON −ROFF; B = (1 + x0)ROFF −RONx0; H = − kVm
ωα [cos( 1−α

2 π) − cos(ωt +
1−α

2 π)] + ROFFx0

and we can obtain:
Ax2 + Bx + H = 0. (13)

x1 =
−B +

√

B2 − 4AH
2A

; x2 =
−B−

√

B2 − 4AH
2A

. (14)

The value of Mα(x) can be calculated.
To further study the dynamic behaviors of this MR circuit in parallel, the parameters were

configured as the following: the input voltage v(t) = Vm sinωt, and the parameters RON1 = 100 Ω,
ROFF1 = 10 kΩ, Vm = 3 V, D = 10 nm, uv = 10−14 m.s−1V−1, RON2 = 120 Ω, ROFF2 = 18 kΩ, and
ω = 5. The simulation result when using these parameters is shown in Figure 8.
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Figure 8. Simulation results of two memristors connected in parallel with v(t) − i(t) curves.

It was found the two MRs that were connected in parallel also possessed the memristive properties
with pinched hysteresis loops which are hown in Figure 8.

4.3. The Circuit of Fractal-Order Memristor and Capacitor That Are Serially Connected

The fractional-order memristor Mα(t) and serially connected capacitor C are shown in Figure 9.
By assume the current i(t) = Im sinωt, M expresses the memristor, and C is the capacitor.
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We can obtain:

v(t) = uC(t) + uMα(t) = uC(t0) +
1
C

∫ t
t0

iC(t)dt + iMα(t)Mα(t)

= uC(t0) +
I cos(ωt0)

Cω −
I cos(ωt)

Cω − B sin( 1−α
2 π) + A sin(ωt) + B sin(2ωt + 1−α

2 π).
(15)

where
A = (RON −ROFF)[x(0) +

Ik
ωα

(cos
1− α

2
π)]I + ROFFI. (16a)

B =
(ROFF −RON)kI2

2ωα
. (16b)

The simulation result is shown in Figure 10. From Figure 10a, it can be seen as the parameter α
decreased, the area of hysteresis loops increased and the difference of resistance increased with same
current. From Figure 10b, it can be seen that if the parameters α and C were not varied, as ω increased,
the area of hysteresis loops decreased. From Figure 10c, it can be seen that if the parameters α and ω
were not varied, the area of hysteresis loops was not almost changed and the capacitor has little effect
on the circuit.Symmetry 2019, 11, x FOR PEER REVIEW 8 of 12 
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4.4. The Circuit of Fractal-Order Memristor and Capacitor That Were Connected in Parallel

A memristor and a capacitor which were connected in parallel are shown in Figure 11, we can
assume that v(t) = Vm sin(ωt), ω(0) = 0,Vm is the voltage magnitude.
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By applying Kirchhoff’s current law (KCL), the current of circuit can be written as:

i(t) =
v(t)

Mα(t)
+ C

dv(t)
dt

=
v(t)

Mα(t)
+ωCVm cos(ωt). (17)

Additionally, when the parameters α and ω were chosen as different values, it can be seen the circuit of
a memristor and a capacitor that were connected in parallel also possessed the memristive properties
with pinched hysteresis loops which are shown in simulations in Figure 12a,b.Symmetry 2019, 11, x FOR PEER REVIEW 9 of 12 
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4.5. The Circuit of Fractal-Order Memristor and Inductor That Are Serially Connected

The circuit of the memristor and serially connected inductor are shown in Figure 13, where we
assumed i(t) = Im sin(ωt), ω(0) = 0.
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The voltage was:

v(t) = uL(t) + uMα(t) = L diL(t)
dt + iMα(t)Mα(t)

= ILω cos(ωt) + A sin(ωt) + B[sin(2ωt + 1−α
2 π) − sin( 1−α

2 π)]

= uC(t0) +
I cos(ωt0)

Cω −
I cos(ωt)

Cω − B sin( 1−α
2 π) + A sin(ωt) + B sin(2ωt + 1−α

2 π).

(18)

and
A = (RON −ROFF)[x(0) +

Ik
ωα

(cos
1− α

2
π)]I + ROFFI. (19a)

B =
(ROFF −RON)kI2

2ωα
. (19b)

The simulation result is shown in Figure 14. From Figure 14a, it can be seen that as the parameters
ω and L were not varied, because as α decreased, the area of hysteresis loops increased and the difference
of resistance increased with the same current. From Figure 14b, it can be seen that if the parameters α
and L were not varied, as ω increased, the area of the hysteresis loops decreased. From Figure 14c, it
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can be seen that if the parameters α and ω were not varied, the area of the hysteresis loops was not
almost changed, and it is shown that the inductor barely affected the circuit.Symmetry 2019, 11, x FOR PEER REVIEW 10 of 12 
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4.6. The Circuit of Fractal-Order Memristor and Inductor Connected in Parallel

A memristor and a capacitor that were connected in parallel are shown in Figure 15. By assuming
the voltage v(t) = Vm sin(ωt), ω(0) = 0, Vm can be found as the voltage amplitude. By applying
Kirchhoff’s current law (KCL), the current of circuit can be written as:

L
diL(t)

dt
= v(t) = Vm sin(ωt). (20a)

iL(t) =
Vm

ωL
[1− cos(ωt)]. (20b)

i(t) = iMα(t) + iL(t) =
v(t)

Mα(t)
+

Vm

ωL
[1− cos(ωt)]. (20c)
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The simulation is shown in Figure 16a,b. It can be seen the circuit of the memristor and inductor
that were connected in parallel also possessed memristive properties with pinched hysteresis loops.
From Figure 16a, it can be seen the area of pinched hysteresis loops increased with α increased.
From Figure 16b, it can be seen the area of the pinched hysteresis loops decreased with the ω increased.
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4. Conclusion 

In summary, this paper has presented a fractional-order memristor model and verifies the three 
essential characteristics of a fractional-order memristor. In addition, the properties of fractional-order 
memristor have been described. In a simple memristive series circuit, with a change of the fractional 
derivative order, the series circuit of a fractional-order memristor and a capacitor or inductor shows a 
conversion from a pure capacitor circuit to a memristive circuit. The series circuit shows conversions of 
purely inductive and memristive circuits. Here, analytical solutions were derived by a fractional-order 
memristor, the properties of fractional-order memristor model parameters were obtained, and 
simulation results were given. The results showed that material properties determine the order of the 
fractional derivative, so the best memory capacity of a physical memristor can be achieved by finding 
materials that are compatible with the excitation frequency. 
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5. Conclusions

In summary, this paper has presented a fractional-order memristor model and verifies the three
essential characteristics of a fractional-order memristor. In addition, the properties of fractional-order
memristor have been described. In a simple memristive series circuit, with a change of the fractional
derivative order, the series circuit of a fractional-order memristor and a capacitor or inductor
shows a conversion from a pure capacitor circuit to a memristive circuit. The series circuit shows
conversions of purely inductive and memristive circuits. Here, analytical solutions were derived by
a fractional-order memristor, the properties of fractional-order memristor model parameters were
obtained, and simulation results were given. The results showed that material properties determine
the order of the fractional derivative, so the best memory capacity of a physical memristor can be
achieved by finding materials that are compatible with the excitation frequency.
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