Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- ;
- (2)
- .
- (1)
- if and only if is compact (B is relatively compact).
- (2)
- .
- (3)
- implies .
- (4)
- .
- (5)
- .
- (6)
- .
- (7)
- , for all .
- 1.
- is measurable for each , and
- 2.
- is continuous for almost each .
- 1.
- The function is continuous on J.
- 2.
3. Results
- (P1)
- The functions f, g, satisfy Carathéodory conditions.
- (P2)
- There exists , , such that
- (P3)
- For almost all and each bounded set , we have
4. Example
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields, and Media; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 2012, 140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Benchohra, M.; Hamani, S. A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109, 973–1033. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 2008, 3, 1–12. [Google Scholar]
- Benhamida, W.; Hamani, S.; Henderson, J. Boundary value problems for Caputo-Hadamard fractional differential equations. Adv. Theor. Nonlinear Anal. Appl. 2018, 2, 138–145. [Google Scholar]
- Hamani, S.; Benchohra, M.; Graef, J.R. Existence results for boundary-value problems with nonlinear fractional differential inclusion and integral conditions. Electron. J. Differ. Equ. 2010, 2010, 1–16. [Google Scholar]
- Zahed, A.; Hamani, S.; Henderson, J. Boundary value problems for Caputo-Hadamard fractional differential inclusions with integral conditions. Moroc. J. Pure Appl. Anal. 2020, 6, 62–75. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Benchohra, M.; Seba, D. On the application of measure of noncompactness to the existence of solutions for fractional differential equations. Results Math. 2009, 55, 221–230. [Google Scholar] [CrossRef]
- Benchohra, M.; Cabada, A.; Seba, D. An existence result for nonlinear fractional differential equations on Banach spaces. Bound. Value. Probl. 2009, 2009, 628916. [Google Scholar] [CrossRef] [Green Version]
- Hamani, S.; Henderson, J. Boundary value problems for fractional differential equations and inclusions in Banach spaces. Malaya J. Mat. 2017, 5, 346–366. [Google Scholar]
- Jackson, F. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge Univ. Press: Cambridge, UK, 1990. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Al-Salam, W. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Salahshour, S.; Ahmadian, A.; Chan, C.S. Successive approximation method for Caputo q-fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 153–158. [Google Scholar] [CrossRef]
- Zhou, W.X.; Liu, H.Z. Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 2013, 113. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Benchohra, M.; Laledj, N.; Zhou, Y. Existence and Ulam stability for implicit fractional q-difference equation. Adv. Differ. Equ. 2019, 2019, 480. [Google Scholar] [CrossRef]
- Ahmad, B. Boundary value problem for nonlinear third order q-difference equations. Electron. J. Differ. Equ. 2011, 94, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Banas, J.; Goebel, K. Measure of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Dekker: New York, NY, USA, 1980; Volume 60. [Google Scholar]
- Banas, J.; Sadarangani, K. On some measures of noncompactness in the space of continuous functions. Nonlinear Anal. 2008, 68, 377–383. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Math. and Its Applications; Kluwer: Dordrecht, The Netherlands, 1996; Volume 373. [Google Scholar]
- Akhmerov, R.R.; Kamenskii, M.I.; Patapov, A.S.; Rodkina, A.E.; Sadovskii, B.N. Measures of Noncompactness and Condensing Operators; Iacob, A., Ed.; Operator Theory: Advances and Applications; Birkhäuser: Boston, MA, USA, 1992; Volume 55. (In Russian) [Google Scholar]
- Mönch, H. Boundary value problem for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 1980, 4, 985–999. [Google Scholar] [CrossRef]
- Mönch, H.; Harten, G.F.V. On the Cauchy problem for ordinary differential equations in Banach spaces. Arch. Math. 1982, 39, 153–160. [Google Scholar] [CrossRef]
- Szufla, S. On the application of measure of noncompactness to existence theorems. Rend. Semin. Mat. Univ. Padova 1986, 75, 1–14. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Agarwal, R.P.; Meehan, M.; O’Regan, D. Fixed Point Theory and Applications; Cambridge Tracts in Mathematics: Cambridge, UK, 2001; p. 141. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allouch, N.; Graef, J.R.; Hamani, S. Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces. Fractal Fract. 2022, 6, 237. https://doi.org/10.3390/fractalfract6050237
Allouch N, Graef JR, Hamani S. Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces. Fractal and Fractional. 2022; 6(5):237. https://doi.org/10.3390/fractalfract6050237
Chicago/Turabian StyleAllouch, Nadia, John R. Graef, and Samira Hamani. 2022. "Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces" Fractal and Fractional 6, no. 5: 237. https://doi.org/10.3390/fractalfract6050237
APA StyleAllouch, N., Graef, J. R., & Hamani, S. (2022). Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces. Fractal and Fractional, 6(5), 237. https://doi.org/10.3390/fractalfract6050237