Next Article in Journal
Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces
Previous Article in Journal
Multi-AUV Dynamic Maneuver Countermeasure Algorithm Based on Interval Information Game and Fractional-Order DE
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some Variational Inequalities Involving Second-Order Partial Derivatives

1
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
2
Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan
3
Nonlinear Analysis and Applied Mathematics-Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2022, 6(5), 236; https://doi.org/10.3390/fractalfract6050236
Submission received: 28 March 2022 / Revised: 21 April 2022 / Accepted: 23 April 2022 / Published: 25 April 2022

Abstract

:
By using the monotonicity, hemicontinuity, and pseudomonotonicity of the considered integral functionals, we studied the well-posedness of some variational inequality problems governed by partial derivatives of the second-order. To this aim, we introduce the approximating solution set and the concept of approximating sequences for the considered controlled variational inequality problem. Further, by using the aforementioned new mathematical tools, we established some theorems on well-posedness. Moreover, the theoretical tools and results included in the paper are accompanied by some examples.

1. Introduction

At times, it is not easy to figure out the solutions associated with optimization problems, using certain methods. In this regard, the well-posedness of an optimization problem is important since this condition provides the convergence of the approximate solution sequence. Many researchers have studied this concept for unconstrained optimization problems (see Tykhonov [1]) and, moreover, they have introduced many types of well-posedness, namely: well-posedness of the Levitin–Polyak type [2] and extended well-posedness (Chen et al. [3]). Well-posedness of the Tykhonov-type was also extended to variational inequalities (see Huang et al. [4], Fang et al. [5], Virmani and Srivastava [6], Hu et al. [7]), and to other connected problems, such as hemivariational inequality problems (see Ceng et al. [8], Wang et al. [9], Shu et al. [10]), complementary problems, equilibrium problems, and Nash equilibrium problems (see Lignola and Morgan [11]). A generalized well-posedness for variational disclusion problems and inclusion problems has been proposed by Lin and Chuang [12]. Moreover, Lalita and Bhatia [13] analyzed the well-posedness for minimization problems. In the last few years, multi-time variational inequality appeared as a necessary generalization of variational inequality (Treanţă [14,15]). Moreover, multidimensional optimization problems have been investigated, with remarkable results, by Treanţă [16,17,18]. For other (different but connected) ideas on well-posedness and differential inclusions of the second-order, the reader is directed to Antonelli et al. [19], Sawano [20], Lakzian and Munn [21], Vijayakumar et al. [22].
In this paper, motivated by previous research works, we studied the well-posedness associated with a class of controlled variational inequality problems. More specifically, by considering the concepts of hemicontinuity, monotonicity, and pseudomonotonicity for functionals of path-independent curvilinear integral types, and by defining the approximating solution set of the considered problem, we established some results on well-posedness. The main novelty elements of this paper are given by the presence of the curvilinear integral functionals governed by second-order partial derivatives, and of the mathematical context determined by function spaces of infinite-dimensions. Moreover, due to the new elements highlighted above and thanks to the physical significance of the involved functionals (the path-independent curvilinear integrals compute the mechanical work done by a variable force, for moving its application point along a piecewise differentiable curve), this paper represents important work for researchers in the fields of abstract and applied mathematics.
The paper is structured as follows. In Section 2, we introduce the preliminary mathematical tools, namely, the notions of pseudomonotonicity, monotonicity, and hemicontinuity of an integral functional of curvilinear type, and an auxiliary lemma. The well-posedness of the problem under study is investigated in Section 3 by considering the approximating solution set. Concretely, we establish that well-posedness is characterized in terms of existence and uniqueness of the solution. Moreover, to validate the theoretical results, we also provide some illustrative examples. In Section 4, we conclude the paper.

2. Preliminaries

In the following, in accordance with Treanţă [15,16], we consider: Ω is a compact set in R m , Ω s = ( s ν ) , ν = 1 , m ¯ , is a multi-variate evolution parameter, Ω Υ is a piecewise differentiable curve that links the points s 1 = ( s 1 1 , , s 1 m ) , s 2 = ( s 2 1 , , s 2 m ) in Ω ; consider P is the space of C 4 -class state functions p : Ω R n and p κ : = p s κ , p α β : = 2 p s α s β denote the partial speed and partial acceleration, respectively; also, let Ξ be the space of C 1 -class control functions y : Ω R k , and assume that P × Ξ is a (nonempty) convex and closed subset of P × Ξ , equipped with
( p , y ) , ( q , z ) = Υ [ p ( s ) · q ( s ) + y ( s ) · z ( s ) ] d s ν
= Υ [ i = 1 n p i ( s ) q i ( s ) + j = 1 k y j ( s ) z j ( s ) ] d s ν
= Υ [ i = 1 n p i ( s ) q i ( s ) + j = 1 k y j ( s ) z j ( s ) ] d s 1 + + [ i = 1 n p i ( s ) q i ( s ) + j = 1 k y j ( s ) z j ( s ) ] d s m ,
( p , y ) , ( q , z ) P × Ξ
and the norm induced by it.
Let J 2 ( R m , R n ) be the jet bundle of the second-order of R m and R n . Assume that the following second-order Lagrangians f ν : J 2 ( R m , R n ) × R k R , ν = 1 , m ¯ provide a controlled closed Lagrange 1-form (see Einstein summation)
f ν ( s , p ( s ) , p κ ( s ) , p α β ( s ) , y ( s ) ) d s ν ,
which gives the following integral functional
F : P × Ξ R , F ( p , y ) = Υ f ν s , p ( s ) , p κ ( s ) , p α β ( s ) , y ( s ) d s ν
= Υ f 1 s , p ( s ) , p κ ( s ) , p α β ( s ) , y ( s ) d s 1 + + f m s , p ( s ) , p κ ( s ) , p α β ( s ) , y ( s ) d s m .
To formulate the problem under study, we shall introduce the Saunders’s multi-index notation (see Saunders [23]).
Now, we introduce the variational problem: find ( p , y ) P × Ξ such that
Υ f ν p ( ψ p , y ( s ) ) ( q ( s ) p ( s ) ) + f ν p κ ( ψ p , y ( s ) ) D κ ( q ( s ) p ( s ) ) d s ν
+ Υ 1 x ( α , β ) f ν p α β ( ψ p , y ( s ) ) D α β 2 ( q ( s ) p ( s ) ) d s ν
+ Υ f ν y ( ψ p , y ( s ) ) ( z ( s ) y ( s ) ) d s ν 0 , ( q , z ) P × Ξ ,
where D κ : = s κ is the total derivative operator, D α β 2 : = D α ( D β ) , and ( ψ p , y ( s ) ) : = ( s , p ( s ) , p κ ( s ) , p α β ( s ) , y ( s ) ) .
Let K be the feasible solution set of (variational problem equation),
K = { ( p , y ) P × Ξ : Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ p , y ( s ) ) + D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ p , y ( s ) ) + 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ p , y ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ p , y ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ } .
Assumption 1.
The working hypothesis is assumed:
d G : = D κ f ν p κ ( p q ) d s ν
is a total exact differential, with G ( s 1 ) = G ( s 2 ) .
Further, in accordance to assumption (hypothesis equation) and by considering the notion of monotonicity associated with variational inequalities, we introduce the monotonicity and pseudomonotonicity of the above functional F .
Definition 1.
The functional F is monotone on P × Ξ if:
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ p , y ( s ) ) f ν p ( ψ q , z ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ p , y ( s ) ) f ν y ( ψ q , z ( s ) ) + D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ p , y ( s ) ) f ν p κ ( ψ q , z ( s ) ) + 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ p , y ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 ,
( p , y ) , ( q , z ) P × Ξ
is satisfied.
Example 1.
For Ω = [ 0 , 1 ] 2 , ν { 1 , 2 } and Ω Υ a piecewise differentiable curve that links ( 0 , 0 ) , ( 1 , 1 ) in Ω , we define
f ν ( ψ p , y ( s ) ) d s ν = f 1 ( ψ p , y ( s ) ) d s 1 + f 2 ( ψ p , y ( s ) ) d s 2
= p s 1 + y ( s ) d s 1 + ( e p ( s ) 1 ) d s 2 .
The functional Υ f ν ( ψ p , y ( s ) ) d s ν is monotone on P × Ξ = C 4 ( Ω , R ) × C 1 ( Ω , R ) since
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ p , y ( s ) ) f ν p ( ψ q , z ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ p , y ( s ) ) f ν y ( ψ q , z ( s ) ) + D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ p , y ( s ) ) f ν p κ ( ψ q , z ( s ) ) + 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ p , y ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν = Υ ( p ( s ) q ( s ) ) ( e p ( s ) e q ( s ) ) d s 2 0 , ( p , y ) , ( q , z ) P × Ξ .
Definition 2.
The functional F is pseudo-monotone on P × Ξ if:
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ q , z ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ p , y ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ p , y ( s ) )
+ D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ p , y ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ p , y ( s ) ) ] d s ν 0 ,
( p , y ) , ( q , z ) P × Ξ
is valid.
Example 2.
For Ω = [ 0 , 1 ] 2 , ν { 1 , 2 } and Ω Υ a piecewise differentiable curve that links ( 0 , 0 ) , ( 1 , 1 ) in Ω , we define
f ν ( ψ p , y ( s ) ) d s ν = f 1 ( ψ p , y ( s ) ) d s 1 + f 2 ( ψ p , y ( s ) ) d s 2
= p s 1 + sin y ( s ) d s 1 + p ( s ) e p ( s ) d s 2 .
The functional Υ f ν ( ψ p , y ( s ) ) d s ν is pseudo-monotone on
P × Ξ = C 4 ( Ω , [ 1 , 1 ] ) × C 1 ( Ω , [ 1 , 1 ] )
since
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ q , z ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν
= Υ ( y ( s ) z ( s ) ) cos z ( s ) + D 1 ( p ( s ) q ( s ) ) d s 1 + ( p ( s ) q ( s ) ) ( e q ( s ) + q ( s ) e q ( s ) ) d s 2 0 , ( p , y ) , ( q , z ) P × Ξ
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ p , y ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ p , y ( s ) )
+ D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ p , y ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ p , y ( s ) ) ] d s ν
= Υ ( y ( s ) z ( s ) ) cos y ( s ) + D 1 ( p ( s ) q ( s ) ) d s 1 + ( p ( s ) q ( s ) ) ( e p ( s ) + p ( s ) e p ( s ) ) d s 2 0 , ( p , y ) , ( q , z ) P × Ξ .
On the other hand, it is not monotone on P × Ξ ,
Υ [ ( p ( s ) q ( s ) ) f ν p ( ψ p , y ( s ) ) f ν p ( ψ q , z ( s ) ) + ( y ( s ) z ( s ) ) f ν y ( ψ p , y ( s ) ) f ν y ( ψ q , z ( s ) ) + D κ ( p ( s ) q ( s ) ) f ν p κ ( ψ p , y ( s ) ) f ν p κ ( ψ q , z ( s ) ) + 1 x ( α , β ) D α β 2 ( p ( s ) q ( s ) ) f ν p α β ( ψ p , y ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν = Υ ( y ( s ) z ( s ) ) ( cos y ( s ) cos z ( s ) ) d s 1 + ( p ( s ) q ( s ) ) ( p ( s ) e p ( s ) + e p ( s ) q ( s ) e q ( s ) e q ( s ) ) d s 2 0 , ( p , y ) , ( q , z ) P × Ξ .
By using Usman and Khan [24], we introduce the following definition:
Definition 3.
The functional F is hemicontinuous on P × Ξ if
λ ( p ( s ) , y ( s ) ) ( q ( s ) , z ( s ) , δ ν F δ p λ , δ ν F δ y λ , 0 λ 1
is continuous at 0 + , for ( p , y ) , ( q , z ) P × Ξ , where
δ ν F δ p λ : = f ν p ( ψ p λ , y λ ( s ) ) D κ f ν p κ ( ψ p λ , y λ ( s ) ) + 1 x ( α , β ) D α β 2 f ν p α β ( ψ p λ , y λ ( s ) ) P ,
δ ν F δ y λ : = f ν y ( ψ p λ , y λ ( s ) ) Ξ ,
p λ : = λ p + ( 1 λ ) q , y λ : = λ y + ( 1 λ ) z .
Lemma 1.
Let the functional F be hemicontinuous and pseudo-monotone on P × Ξ . A point ( p , y ) P × Ξ solves (variational problem equation) if and only if ( p , y ) P × Ξ solves
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
Proof. 
Firstly, we consider the pair ( p , y ) P × Ξ solves (variational problem equation); that is,
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ p , y ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ p , y ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ p , y ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ p , y ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
By pseudomonotonicity, we have
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
Conversely, assume that
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
Now, for ( q , z ) P × Ξ and λ ( 0 , 1 ] , we consider
( q λ , z λ ) = ( ( 1 λ ) p + λ q , ( 1 λ ) y + λ z ) P × Ξ .
The above inequality is reformulated as
Υ [ ( q λ ( s ) p ( s ) ) f ν p ( ψ q λ , z λ ( s ) ) + ( z λ ( s ) y ( s ) ) f ν y ( ψ q λ , z λ ( s ) )
+ D κ ( q λ ( s ) p ( s ) ) f ν p κ ( ψ q λ , z λ ( s ) )
+ 1 x ( α , β ) D α β 2 ( q λ ( s ) p ( s ) ) f ν p α β ( ψ q λ , z λ ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
Taking λ 0 and considering the hemicontinuity of the integral functional, we obtain
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ p , y ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ p , y ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ p , y ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ p , y ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ ,
showing that ( p , y ) solves (variational problem equation). □

3. Main Results

In this section, we investigate the well-posedness of the considered variational inequality problem involving second-order PDEs.
Definition 4.
The sequence { ( p n , y n ) } P × Ξ is called an approximating sequence of (variational problem equation) if there exists a sequence of positive real numbers σ n 0 as n , such that the following inequality holds:
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ p n , y n ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ p n , y n ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ p n , y n ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ p n , y n ( s ) ) ] d s ν + σ n 0 , ( q , z ) P × Ξ .
Definition 5.
The problem (variational problem equation) is called well-posed if:
(i) 
The problem (variational problem equation) has one solution ( p 0 , y 0 ) ;
(ii) 
Each approximating sequence of (variational problem equation) converges to ( p 0 , y 0 ) .
The approximating solution set of (variational problem equation) is given as follows:
K σ = { ( p , y ) P × Ξ : Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ p , y ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ p , y ( s ) ) + D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ p , y ( s ) ) + 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ p , y ( s ) ) ] d s ν + σ 0 , ( q , z ) P × Ξ } .
Remark 1.
We have: K = K σ , when σ = 0 and K K σ , σ > 0 .
Further, for a set B, the diameter of B is defined as follows
diam B = sup ϕ , η B ϕ η .
Theorem 1.
Let the functional F be hemicontinuous and monotone on P × Ξ . The problem (variational problem equation) is well-posed if and only if
K σ , σ > 0 and diam K σ 0 as σ 0 .
Proof. 
Let us consider the problem (variational problem equation) is well-posed. By Definition 5, it has one solution ( p ¯ , y ¯ ) K . Since K K σ , σ > 0 ; therefore, K σ , σ > 0 . Contrary, we consider that diam K σ 0 as σ 0 . Then there exist r > 0 , a positive integer m, a sequence of real numbers σ n > 0 with σ n 0 , and two elements ( p n , y n ) and ( p n , y n ) K σ n , so that
( p n ( s ) , y n ( s ) ) ( p n ( s ) , y n ( s ) ) > r , n m .
Since ( p n , y n ) , ( p n , y n ) K σ n , we have
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ p n , y n ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ p n , y n ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ p n , y n ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ p n , y n ( s ) ) ] d s ν + σ n 0 , ( q , z ) P × Ξ
and
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ p n , y n ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ p n , y n ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ p n , y n ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p a l p h a β ( ψ p n , y n ( s ) ) ] d s ν + σ n 0 , ( q , z ) P × Ξ .
It results that { ( p n , y n ) } and { ( p n , y n ) } are approximating sequences of (variational problem equation) converging to ( p ¯ , y ¯ ) . By computation, we obtain
( p n ( s ) , y n ( s ) ) ( p n ( s ) , y n ( s ) )
= ( p n ( s ) , y n ( s ) ) ( p ¯ ( s ) , y ¯ ( s ) ) + ( p ¯ ( s ) , y ¯ ( s ) ) ( p n ( s ) , y n ( s ) )
( p n ( s ) , y n ( s ) ) ( p ¯ ( s ) , y ¯ ( s ) ) + ( p ¯ ( s ) , y ¯ ( s ) ) ( p n ( s ) , y n ( s ) ) σ ,
which enters in contradiction with (1), for some σ = r .
Now, let us consider { ( p n , y n ) } is an approximating sequence of (variational problem equation). Thus, there exists a sequence of positive real numbers σ n 0 as n so that
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ p n , y n ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ p n , y n ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ p n , y n ( s ) )
+ 1 x ( α , β ) D α β 2 ( ( q ( s ) p n ( s ) ) f ν p α β ( ψ p n , y n ( s ) ) ] d s ν + σ n 0 , ( q , z ) P × Ξ
is true, involving ( p n , y n ) K σ n . Since diam K σ n 0 as σ n 0 , we have { ( p n , y n ) } is a Cauchy sequence converging to some ( p ¯ , y ¯ ) P × Ξ .
Since the functional Υ f ν ( ψ p , y ( s ) ) d s ν is monotone on P × Ξ , for ( p ¯ , y ¯ ) , ( q , z ) P × Ξ , we have
Υ [ ( p ¯ ( s ) q ( s ) ) f ν p ( ψ p ¯ , y ¯ ( s ) ) f ν p ( ψ q , z ( s ) )
+ ( y ¯ ( s ) z ( s ) ) f ν y ( ψ p ¯ , y ¯ ( s ) ) f ν p ( ψ q , z ( s ) )
+ D κ ( p ¯ ( s ) q ( s ) ) f ν p κ ( ψ p ¯ , y ¯ ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ¯ ( s ) q ( s ) ) f ν p α β ( ψ p ¯ , y ¯ ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0
or, equivalently,
Υ [ ( p ¯ ( s ) q ( s ) ) f ν p ( ψ p ¯ , y ¯ ( s ) ) + ( y ¯ ( s ) z ( s ) ) f ν y ( ψ p ¯ , y ¯ ( s ) )
+ D κ ( p ¯ ( s ) q ( s ) ) f ν p κ ( ψ p ¯ , y ¯ ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ¯ ( s ) q ( s ) ) f ν p α β ( ψ p ¯ , y ¯ ( s ) ) ] d s ν
Υ [ ( p ¯ ( s ) q ( s ) ) f ν p ( ψ q , z ( s ) ) + ( y ¯ ( s ) z ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( p ¯ ( s ) q ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ¯ ( s ) q ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν .
Taking the limit in (2), we obtain
Υ [ ( p ¯ ( s ) q ( s ) ) f ν p ( ψ p ¯ , y ¯ ( s ) ) + ( y ¯ ( s ) z ( s ) ) f ν y ( ψ p ¯ , y ¯ ( s ) )
+ D κ ( p ¯ ( s ) q ( s ) ) f ν p κ ( ψ p ¯ , y ¯ ( s ) )
+ 1 x ( α , β ) D α β 2 ( p ¯ ( s ) q ( s ) ) f ν p α β ( ψ p ¯ , y ¯ ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
By (3) and (4), we have
Υ [ ( q ( s ) p ¯ ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y ¯ ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p ¯ ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ¯ ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
Further, by Lemma 1, we have
Υ [ ( q ( s ) p ¯ ( s ) ) f ν p ( ψ p ¯ , y ¯ ( s ) ) + ( z ( s ) y ¯ ( s ) ) f ν y ( ψ p ¯ , y ¯ ( s ) )
+ D κ ( q ( s ) p ¯ ( s ) ) f ν p κ ( ψ p ¯ , y ¯ ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ¯ ( s ) ) f ν p α β ( ψ p ¯ , y ¯ ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ ,
which implies that ( p ¯ , y ¯ ) K . Now, we prove that ( p ¯ , y ¯ ) is the single solution of (variational problem equation). We suppose that ( p 1 , y 1 ) , ( p 2 , y 2 ) are two different solutions of (variational problem equation). Then
0 < ( p 1 ( s ) , y 1 ( s ) ) ( p 2 ( s ) , y 2 ( s ) ) diam K σ 0 as σ 0 ,
which is a contradiction. □
Theorem 2.
Let the functional F be hemicontinuous and monotone on P × Ξ . Then (variational problem equation) is well-posed if and only if it has one solution.
Proof. 
Consider the problem (variational problem equation) is well-posed. Consequently, by Definition 5, it has one solution ( p 0 , y 0 ) . Conversely, suppose that (variational problem equation) has a unique solution ( p 0 , y 0 ) but it is not well-posed. Thus, there exists an approximating sequence { ( p n , y n ) } of (variational problem equation), which does not converge to ( p 0 , y 0 ) . Since { ( p n , y n ) } is an approximating sequence of (variational problem equation), there must exist a sequence of positive real numbers σ n 0 as n such that
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ p n , y n ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ p n , y n ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ p n , y n ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ p n , y n ( s ) ) ] d s ν + σ n 0 , ( q , z ) P × Ξ .
To prove the boundedness of { ( p n , y n ) } , suppose { ( p n , y n ) } is not bounded; that is, ( p n ( s ) , y n ( s ) ) + as n + . Consider δ n ( s ) = 1 ( p n ( s ) , y n ( s ) ) ( p 0 ( s ) , y 0 ( s ) ) and ( p n , y n ) = ( p 0 , y 0 ) + δ n [ ( p n , y n ) ( p 0 , y 0 ) ] .
We obtain that { ( p n , y n ) } is bounded in P × Ξ . So, we may assume that
( p n , y n ) ( p , y ) weakly   in   P × Ξ ( p 0 , y 0 ) .
It is not difficult to verify that ( p , y ) ( p 0 , y 0 ) , thanks to
δ n ( s ) [ ( p n ( s ) , y n ( s ) ) ( p 0 ( s ) , y 0 ( s ) ) ] = 1 ,
for all n N . Since ( p 0 , y 0 ) is a solution of (variational problem equation); therefore,
Υ [ ( q ( s ) p 0 ( s ) ) f ν p ( ψ p 0 , y 0 ( s ) ) + ( z ( s ) y 0 ( s ) ) f ν y ( ψ p 0 , y 0 ( s ) )
+ D κ ( q ( s ) p 0 ( s ) ) f ν p κ ( ψ p 0 , y 0 ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p 0 ( s ) ) f ν p α β ( ψ p 0 , y 0 ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
Thus, by considering Lemma 1, we have
Υ [ ( q ( s ) p 0 ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y 0 ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p 0 ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p 0 ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
The integral functional F is monotone on P × Ξ . Consequently, for ( p n , y n ) , ( q , z ) P × Ξ , we have
Υ [ ( p n ( s ) q ( s ) ) f ν p ( ψ p n , y n ( s ) ) f ν p ( ψ q , z ( s ) )
+ ( y n ( s ) z ( s ) ) f ν y ( ψ p n , y n ( s ) ) f ν p ( ψ q , z ( s ) )
+ D κ ( p n ( s ) q ( s ) ) f ν p κ ( ψ p n , y n ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( p n ( s ) q ( s ) ) f ν p α β ( ψ p n , y n ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0 ,
or, equivalently,
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ p n , y n ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ p n , y n ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ p n , y n ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ p n , y n ( s ) ) ] d s ν
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν .
Combining with (5) and (7), we have
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν σ n , ( q , z ) P × Ξ .
Since δ n 0 as n , we can consider n 0 N be large enough so that δ n < 1 for all n n 0 . By multiplying the above inequality and (6) by δ n > 0 and 1 δ n > 0 , respectively, we sum the resulting inequalities to obtain
Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν σ n , ( q , z ) P × Ξ , n n 0 .
Since ( p n , y n ) ( p , y ) ( p 0 , y 0 ) and ( p n , y n ) = ( p 0 , y 0 ) + δ n [ ( p n , y n ) ( p 0 , y 0 ) ] , we have
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν
= lim n Υ [ ( q ( s ) p n ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y n ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p n ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν
lim n σ n = 0 , ( q , z ) P × Ξ .
Thus, by Lemma 1, we have
Υ [ ( q ( s ) p ( s ) ) f ν p ( ψ p , y ( s ) ) + ( z ( s ) y ( s ) ) f ν y ( ψ p , y ( s ) )
+ D κ ( q ( s ) p ( s ) ) f ν p κ ( ψ p , y ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ( s ) ) f ν p α β ( ψ p , y ( s ) ) ] d s ν 0 , ( q , z ) P × Ξ .
This implies that ( p , y ) is a solution of (variational problem equation), which contradicts the uniqueness of ( p 0 , y 0 ) . Therefore, { ( p n , y n ) } is a bounded sequence having a convergent subsequence { ( p n k , y n k ) } , which converges to ( p ¯ , y ¯ ) P × Ξ as k . From monotonicity, for ( p n k , y n k ) , ( q , z ) P × Ξ , we obtain (see (7))
Υ [ ( q ( s ) p n k ( s ) ) f ν p ( ψ p n k , y n k ( s ) ) + ( z ( s ) y n k ( s ) ) f ν y ( ψ p n k , y n k ( s ) )
+ D κ ( q ( s ) p n k ( s ) ) f ν p κ ( ψ p n k , y n k ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n k ( s ) ) f ν p α β ( ψ p n k , y n k ( s ) ) ] d s ν
Υ [ ( q ( s ) p n k ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y n k ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p n k ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n k ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν .
Moreover, on behalf of (5), we can write
lim k Υ [ ( q ( s ) p n k ( s ) ) f ν p ( ψ p n k , y n k ( s ) ) + ( z ( s ) y n k ( s ) ) f ν y ( ψ p n k , y n k ( s ) )
+ D κ ( q ( s ) p n k ( s ) ) f ν p κ ( ψ p n k , y n k ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n k ( s ) ) f ν p α β ( ψ p n k , y n k ( s ) ) ] d s ν 0 .
Combining (9) and (10), we have
lim k Υ [ ( q ( s ) p n k ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y n k ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p n k ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p n k ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0
Υ [ ( q ( s ) p ¯ ( s ) ) f ν p ( ψ q , z ( s ) ) + ( z ( s ) y ¯ ( s ) ) f ν y ( ψ q , z ( s ) )
+ D κ ( q ( s ) p ¯ ( s ) ) f ν p κ ( ψ q , z ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ¯ ( s ) ) f ν p α β ( ψ q , z ( s ) ) ] d s ν 0
Thus, by Lemma 1, the above inequality implies that
Υ [ ( q ( s ) p ¯ ( s ) ) f ν p ( ψ p ¯ , y ¯ ( s ) ) + ( z ( s ) y ¯ ( s ) ) f ν y ( ψ p ¯ , y ¯ ( s ) )
+ D κ ( q ( s ) p ¯ ( s ) ) f ν p κ ( ψ p ¯ , y ¯ ( s ) )
+ 1 x ( α , β ) D α β 2 ( q ( s ) p ¯ ( s ) ) f ν p α β ( ψ p ¯ , y ¯ ( s ) ) ] d s ν 0 ,
which implies that ( p ¯ , y ¯ ) solves (variational problem equation). So, ( p n k , y n k ) ( p ¯ , y ¯ ) ; that is, ( p n k , y n k ) ( p 0 , y 0 ) , involving ( p n , y n ) ( p 0 , y 0 ) and the proof is complete. □
Further, we provide an illustrative application of the previous theoretical results.
Example 3.
As in the previous section, consider Ω = [ 0 , 1 ] 2 , ν { 1 , 2 } , Ω Υ is a piecewise differentiable curve that links ( 0 , 0 ) , ( 1 , 1 ) in Ω . Moreover, we consider
f ν ( ψ p , y ( s ) ) d s ν = f 1 ( ψ p , y ( s ) ) d s 1 + f 2 ( ψ p , y ( s ) ) d s 2 = y 2 ( s ) d s 1 + ( e p ( s ) p ( s ) ) d s 2 .
(VP-1): Find ( p , y ) P × Ξ = C 4 ( Ω , [ 10 , 10 ] ) × C 1 ( Ω , [ 10 , 10 ] ) so that
Υ 2 ( z ( s ) y ( s ) ) y ( s ) d s 1 + ( q ( s ) p ( s ) ) ( e p ( s ) 1 ) d s 2 0 , ( q , z ) P × Ξ .
We have K = { ( 0 , 0 ) } and the functional Υ f ν ( ψ p , y ( s ) ) d s ν is hemicontinuous and monotone on the set P × Ξ = C 4 ( Ω , [ 10 , 10 ] ) × C 1 ( Ω , [ 10 , 10 ] ) . Since Theorem 2 holds, the variational problem (VP-1) is well-posed. In addition, K σ = { ( 0 , 0 ) } and consequently, K σ and d i a m K σ 0 as σ 0 . By Theorem 1, we also obtain that the variational problem (VP-1) is well-posed.

4. Conclusions

In this paper, by using some properties associated with path-independent curvilinear integral functionals governed by partial derivatives of second-order, we investigated the well-posedness of some variational problems. Moreover, in order to support the mathematical development, some illustrative examples were formulated. Possible lines of research that this study can open, among other aspects, are the following: formulating the derived results by using the variational/functional derivative (see Treanţă [16]); establishing the associated duality results (Wolfe, Mond-Weir, mixed dual).

Author Contributions

Conceptualization, S.T.; methodology, S.T. and M.B.K.; validation, S.T., M.B.K. and T.S.; investigation, S.T., M.B.K. and T.S.; writing—original draft preparation, S.T.; writing—review and editing, S.T., M.B.K. and T.S. All authors have read and agreed to the submitted version of the manuscript.

Funding

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-MSc: 32-130-1443).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Tykhonov, A.N. On the stability of the functional optimization. USSR Comput. Math. Math. Phys. 1966, 6, 631–634. [Google Scholar]
  2. Levitin, E.S.; Polyak, B.T. Convergence of minimizing sequences in conditional extremum problems. Sov. Math. Dokl. 1996, 7, 764–767. [Google Scholar]
  3. Chen, J.W.; Wang, Z.; Cho, Y.J. Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems. Math. Methods Oper. Res. 2013, 77, 33–64. [Google Scholar] [CrossRef]
  4. Huang, X.X.; Yang, X.Q.; Zhu, D.L. Levitin-Polyak well-posedness of variational inequality problems with functional constraints. J. Glob. Optim. 2009, 44, 159–174. [Google Scholar] [CrossRef]
  5. Fang, Y.P.; Huang, N.J.; Yao, J.C. Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 2010, 201, 682–692. [Google Scholar] [CrossRef]
  6. Virmani, G.; Srivastava, M. Various types of well-posedness for mixed vector quasivariational-like inequality using bifunctions. J. Appl. Math. Inform. 2014, 32, 427–439. [Google Scholar] [CrossRef]
  7. Hu, R.; Xiao, Y.B.; Huang, N.J.; Wang, X. Equivalence results of well-posedness for split variational-hemivariational inequalities. J. Nonlinear Convex Anal. 2019, 20, 447–459. [Google Scholar]
  8. Ceng, L.C.; Gupta, H.; Wen, C.F. Well-posedness by perturbations of variational hemivariational inequalities with perturbations. Filomat 2012, 26, 881–895. [Google Scholar] [CrossRef] [Green Version]
  9. Wang, Y.M.; Xiao, Y.B.; Wang, X.; Cho, Y.J. Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 2016, 9, 1178–1192. [Google Scholar] [CrossRef] [Green Version]
  10. Shu, Q.Y.; Hu, R.; Xiao, Y.B. Metric characterizations for well-psedness of split hemivariational inequalities. J. Inequalities Appl. 2018, 2018, 190. [Google Scholar] [CrossRef] [Green Version]
  11. Lignola, M.B.; Morgan, J. α-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Glob. Optim. 2006, 36, 439–459. [Google Scholar] [CrossRef] [Green Version]
  12. Lin, L.J.; Chuang, C.S. Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint. Nonlinear Anal. Theory Methods Appl. 2009, 70, 3609–3617. [Google Scholar] [CrossRef]
  13. Lalitha, C.S.; Bhatia, G. Well-posedness for parametric quasivariational inequality problems and for optimization problems with quasivariational inequality constraints. Optimization 2010, 59, 997–1011. [Google Scholar] [CrossRef]
  14. Treanţă, S. Some results on (ρ, b, d)-variational inequalities. J. Math. Ineq. 2020, 14, 805–818. [Google Scholar] [CrossRef]
  15. Treanţă, S.; Jha, S. On well-posedness associated with a class of controlled variational inequalities. Math. Model. Nat. Phenom. 2021, 16, 52. [Google Scholar] [CrossRef]
  16. Treanţă, S. On well-posed isoperimetric-type constrained variational control problems. J. Differ. Equ. 2021, 298, 480–499. [Google Scholar] [CrossRef]
  17. Treanţă, S. Well-posedness of new optimization problems with variational inequality constraints. Fractal Fract. 2021, 5, 123. [Google Scholar] [CrossRef]
  18. Treanţă, S. On well-posedness of some constrained variational problems. Mathematics 2021, 9, 2478. [Google Scholar] [CrossRef]
  19. Antonelli, G.; Brué, E.; Semola, D. Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces. Anal. Geom. Metr. Spaces 2019, 7, 158–178. [Google Scholar] [CrossRef]
  20. Sawano, Y. A Weak Type Vector-Valued Inequality for the Modified Hardy-Littlewood Maximal Operator for General Radon Measure on Rn. Anal. Geom. Metr. Spaces 2020, 8, 261–267. [Google Scholar] [CrossRef]
  21. Lakzian, S.; Munn, M. On Weak Super Ricci Flow through Neckpinch. Anal. Geom. Metr. Spaces 2021, 9, 120–159. [Google Scholar] [CrossRef]
  22. Vijayakumar, V.; Nisar, K.S.; Shukla, A.; Hazarika, B.; Samidurai, R. An investigation on the approximate controllability of impulsive neutral delay differential inclusions of second order. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
  23. Saunders, D.J. The Geometry of Jet Bundles; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
  24. Usman, F.; Khan, S.A. A generalized mixed vector variational-like inequality problem. Nonlinear Anal. Theory Methods Appl. 2009, 71, 5354–5362. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Treanţă, S.; Khan, M.B.; Saeed, T. On Some Variational Inequalities Involving Second-Order Partial Derivatives. Fractal Fract. 2022, 6, 236. https://doi.org/10.3390/fractalfract6050236

AMA Style

Treanţă S, Khan MB, Saeed T. On Some Variational Inequalities Involving Second-Order Partial Derivatives. Fractal and Fractional. 2022; 6(5):236. https://doi.org/10.3390/fractalfract6050236

Chicago/Turabian Style

Treanţă, Savin, Muhammad Bilal Khan, and Tareq Saeed. 2022. "On Some Variational Inequalities Involving Second-Order Partial Derivatives" Fractal and Fractional 6, no. 5: 236. https://doi.org/10.3390/fractalfract6050236

APA Style

Treanţă, S., Khan, M. B., & Saeed, T. (2022). On Some Variational Inequalities Involving Second-Order Partial Derivatives. Fractal and Fractional, 6(5), 236. https://doi.org/10.3390/fractalfract6050236

Article Metrics

Back to TopTop