Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator
Abstract
:1. Introduction and Definitions
- (1)
- The Chebyshev polynomials of the second kind denoted by are obtained when and ;
- (2)
- The Fibonacci polynomials denoted by are obtained when , , and ;
- (3)
- The Fibonacci numbers denoted by are obtained when , , and ;
- (4)
- The Pell polynomials denoted by are obtained when and ;
- (5)
- The Pell numbers denoted by are obtained when , , and ;
- (6)
- The Jacobsthal polynomials denoted by are obtained when , , and ;
- (7)
- The Jacobsthal numbers denoted by are obtained when , , and .
2. Coefficients’ Bounds for the Functions Class
3. Fekete–Szegö Inequalities for The Function Class
4. Second Hankel Determinant for the Class
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, W.K.; Khan, B. Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Araci, S.; Khan, N.; Ahmad, Z. Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions. Adv. Differ. Equ. 2021, 2021, 440. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspect of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute; Durham, UK, 1–20 July 1979, Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T. On some classes of bi-univalent functions. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Jackson, F.H. On -definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Hohlov, Y.E. Hadamard convolution, hypergeometric functions and linear operators in the class of univalent functions. Dokl. Akad. Nauk Ukr. SSR Ser. A 1984, 7, 25–27. [Google Scholar]
- Hohlov, Y.E. Convolution operators preserving univalent functions. Ukrainian Math. J. 1985, 37, 220–226. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Applications of the Owa–Srivastava operator to the class of k-uniformly convex functions. Fract. Calc. Appl. Anal. 2006, 9, 323–331. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, 2008, 153280. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Gochhayat, P. The Fekete–Szegö problem for k-uniformly convex functions and for a class defined by the Owa–Srivastava operator. J. Math. Anal. Appl. 2008, 397, 563–572. [Google Scholar] [CrossRef]
- Mishra, A.K.; Gochhayat, P. The Fekete–Szegö problem for a class defined by an integral operator. Kodai Math. J. 2010, 33, 310–328. [Google Scholar] [CrossRef]
- Noor, K.I.; Noor, M.A. On integral operators. J. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. (Eds.) Current Topics in Analytic Function Theory. In Current Topics in Analytic Function Theory; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, 1992. [Google Scholar]
- Gochhayat, P.; Prajapat, A.; Sahoo, A.K. Coefficient estimates of certain subclasses of analytic functions associated with Hohlov operator. Asian Eur. J. Math. 2021, 14, 2150021. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Janani, T.; Cho, N.E. bi-univalent functions of complex order based on subordinate conditions involving Hurwitz–LerchZeta function. East Aasian Math. J. 2016, 32, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Altinkaya, S.; Yalcin, S. On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Asia Pac. J. Math. 2017, 4, 90–99. [Google Scholar]
- Ayinla, R.O.; Opoola, T.O. The Fekete–Szegö functional and second Hankel determinant for a certain subclass of analytic functions. Appl. Math. 2019, 10, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Orhan, H.; Magesh, N.; Balaji, V.K. Second Hankel determinant for certain class of bi-univalent functions. Asian-Eur. J. Math. 2019, 12, 1950017. [Google Scholar] [CrossRef] [Green Version]
- Al-Salam, W.A.; Ismail, M.E.H. Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction. Pac. J. Math. 1983, 104, 269–283. [Google Scholar] [CrossRef]
- Cigler, J. A simple approach to q-Chebyshev polynomial. arXiv 2012, arXiv:1201.4703. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient Bounds for the Inverse of a Function with Derivative. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
- Noor, K.I. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures Appl. 1983, 28, 731–739. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel deteminant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- MacGregor, T.H. Functions whose derivative have a positive real part. Trans. Am. Math. Soc. 1962, 104, 532–537. [Google Scholar] [CrossRef]
- Reddy, T.R.; Vamshee Krishna, D. Hankel determinant for starlike and convex functions with respect to symmetric points. J. Indian Math. Soc. 2012, 79, 161–171. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E.; Caglar, M.; Orhan, H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl. Math. Comput. 2015, 271, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Altnkaya, S.; Yalcan, S. Construction of second Hankel determinant for a new subclass of bi-univalent functions. Turk. J. Math. 2018, 42, 2876–2884. [Google Scholar] [CrossRef]
- Caglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Kanas, S.; Analouei Adegani, E.; Zireh, A. An unified approach to second Hankel determinant of bisubordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
- Orhan, H.; Magesh, N.; Yamini, J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turk. J. Math. 2016, 40, 679–687. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal Fract. 2022, 6, 186. https://doi.org/10.3390/fractalfract6040186
Al-Shbeil I, Shaba TG, Cătaş A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal and Fractional. 2022; 6(4):186. https://doi.org/10.3390/fractalfract6040186
Chicago/Turabian StyleAl-Shbeil, Isra, Timilehin Gideon Shaba, and Adriana Cătaş. 2022. "Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator" Fractal and Fractional 6, no. 4: 186. https://doi.org/10.3390/fractalfract6040186
APA StyleAl-Shbeil, I., Shaba, T. G., & Cătaş, A. (2022). Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal and Fractional, 6(4), 186. https://doi.org/10.3390/fractalfract6040186