Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function
Abstract
:1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- ;
- 6.
- , for ;
- 7.
- .
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortez, M.V.J.; Liko, R.; Kashuri, A.; Hernández, J.E.H. New quantum estimates of trapezium—Type inequalities for generalized φ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite—Hadamard Inequality and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite—Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Aljasem, M. Fractional quantum Hermite-Hadamard type inequalities. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, T.-S.; Wang, H.; Shen, Y.-J. Different types of quantum integral inequalities via (α,m)-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Diff. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Diff. Equ. 2015, 18, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cheng, Y.; Huo, L.; Zhao, L. Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination. Chaos Solitons Fractals 2022, 157, 111931. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Finite–approximate controllability of Riemann—Liouville fractional evolution systems via resolvent—Like operators. Fractal Fract. 2021, 5, 199. [Google Scholar] [CrossRef]
- Patel, R.; Shukla, A.; Jadon, S.S. Existence and optimal control problem for semilinear fractional order (1,2] control system. Math. Meth. Appl. Sci. 2020, 43, 1–12. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Complete controllability of semi–linear stochastic system with delay. Rend. Circ. Mat. Palermo 2015, 64, 209–220. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional control systems of order α∈(1,2] with infinite delay. Mediterranean J. Math. 2016, 13, 2539–2550. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.; Vijayakumar, V.; Udhayakumar, R. Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces. Chaos Solitons Fractals 2021, 150, 111095. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonlaopon, K.; Awan, M.U.; Javed, M.Z.; Budak, H.; Noor, M.A. Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal Fract. 2022, 6, 185. https://doi.org/10.3390/fractalfract6040185
Nonlaopon K, Awan MU, Javed MZ, Budak H, Noor MA. Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal and Fractional. 2022; 6(4):185. https://doi.org/10.3390/fractalfract6040185
Chicago/Turabian StyleNonlaopon, Kamsing, Muhammad Uzair Awan, Muhammad Zakria Javed, Hüseyin Budak, and Muhammad Aslam Noor. 2022. "Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function" Fractal and Fractional 6, no. 4: 185. https://doi.org/10.3390/fractalfract6040185
APA StyleNonlaopon, K., Awan, M. U., Javed, M. Z., Budak, H., & Noor, M. A. (2022). Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal and Fractional, 6(4), 185. https://doi.org/10.3390/fractalfract6040185