Next Article in Journal
Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator
Next Article in Special Issue
Certain Hybrid Matrix Polynomials Related to the Laguerre-Sheffer Family
Previous Article in Journal
Numerical Investigations of the Fractional-Order Mathematical Model Underlying Immune-Chemotherapeutic Treatment for Breast Cancer Using the Neural Networks
Previous Article in Special Issue
Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function

by
Kamsing Nonlaopon
1,
Muhammad Uzair Awan
2,*,
Muhammad Zakria Javed
2,
Hüseyin Budak
3 and
Muhammad Aslam Noor
4
1
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
3
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce 81620, Turkey
4
Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(4), 185; https://doi.org/10.3390/fractalfract6040185
Submission received: 24 February 2022 / Revised: 21 March 2022 / Accepted: 22 March 2022 / Published: 25 March 2022

Abstract

:
In this paper, we derive two new identities involving q-Riemann-Liouville fractional integrals. Using these identities, as auxiliary results, we derive some new q-fractional estimates of trapezoidal-like inequalities, essentially using the class of generalized exponential convex functions.
MSC:
05A30; 26A33; 26A51; 34A08; 26D07; 26D10; 26D15

1. Introduction

A set C R is said to be convex, if
( 1 ν ) x + ν y C
for all x , y C and ν [ 0 , 1 ] .
A function F : C R is said to be convex, if
F ( ( 1 ν ) x + ν y ) ( 1 ν ) F ( x ) + ν F ( y )
for all x , y C and ν [ 0 , 1 ] .
The classical concepts of convexity are simple but have many applications in different fields of pure and applied sciences. For example, they play a significant role in the theory of optimization, mathematical economics, operations research, etc. In recent years, the classical concepts of convexity have been extended and generalized in different directions using novel and innovative ideas. It has been observed that these new generalizations of classical convexity enjoy some nice properties which classical convexity has. Recently, Cortez et al. [1] presented a new generalization of convexity class as follows:
Definition 1
([1]). Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A non-empty set I is said to be generalized convex, if
ϖ 1 + τ R ρ , λ , σ ( ϖ 2 ϖ 1 ) I
for all ϖ 1 , ϖ 2 I and τ [ 0 , 1 ] .
Here, R ρ , λ , σ ( z ) is the Raina’s function and is defined as:
R ρ , λ , σ ( z ) = R ρ , λ σ ( 0 ) , σ ( 1 ) , ( z ) = k = 0 σ ( k ) Γ ( ρ k + λ ) z k ,
where ρ , λ > 0 , | z | < R , σ = { σ ( 0 ) , σ ( 1 ) , , σ ( k ) , } is a bounded sequence of positive real numbers and Γ ( η ) = 0 x η 1 e x d x is the gamma function. For details, see [2].
Cortez et al. [1] also defined the class of generalized convex functions as:
Definition 2
([1]). Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A function F : I R is said to be generalized convex, if
F ( ϖ 1 + τ R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( 1 τ ) F ( ϖ 1 ) + τ F ( ϖ 2 )
for all ϖ 1 , ϖ 2 I and τ [ 0 , 1 ] .
Awan et al. [3] introduced the class of exponential convex functions as:
Definition 3
([3]). A function F : C R is said to be exponentially convex, if
F ( ( 1 ν ) x + ν y ) ( 1 ν ) F ( x ) exp ( α x ) + ν F ( y ) exp ( α y ) ,
for all x , y C and ν [ 0 , 1 ] .
Besides its applications, the theory of convexity has also played a dynamic role in developing the theory of inequalities. A wide class of inequalities is just a direct consequence of the applications of the convexity property of the functions. Hermite–Hadamard’s inequality, also known as trapezium-like inequality, is one of the most studied results. It reads as:
Let F : I R R be a convex function, then
F ϖ 1 + ϖ 2 2 1 ϖ 2 ϖ 1 ϖ 1 ϖ 2 F ( x ) d x F ( ϖ 1 ) + F ( ϖ 2 ) 2 .
For some recent developments related to Hermite–Hadamard’s inequality and its applications, see [4].
In recent years, several new techniques have been used to obtain new versions of Hermite–Hadamard’s inequality. For instance, Sarikaya et al. [5] utilized the concepts of fractional calculus and obtained the fractional analogues of Hermite–Hadamard’s inequality. Alp et al. [6] obtained quantum analogue of Hermite–Hadamard’s inequality. Awan et al. [3] obtained a new refinement of Hermite–Hadamard’s inequality using the class of exponentially convex functions. Cortez et al. [1] obtained Hermite–Hadamard’s inequality using the class of generalized convex functions. Kunt and Aljasem [7] obtained fractional quantum versions of Hermite–Hadamard type of inequalities. Noor et al. [8] obtained some more quantum estimates for Hermite–Hadamard inequalities using the class of convex functions. Sudsutad [9] obtained various new quantum integral inequalities for convex functions. Zhang et al. [10] obtained a new generalized quantum-integral identity and obtained new q-integral inequalities via ( α , m ) -convexity property of the functions.
The main motivation of this article is to obtain two new identities involving q-Riemann–Liouville fractional integrals. Using these identities as auxiliary results, we derive some new q-fractional estimates of trapezoidal-like inequalities, essentially using the class of generalized exponential convex functions. We hope that the ideas and techniques of this article will inspire interested readers working in this field.

2. Preliminaries

In this section, we recall some previously known concepts and results.
The following concept of q -derivative was introduced and studied in [11].
Definition 4
([11]). For a continuous function F : [ ϖ 1 , ϖ 2 ] R the q -derivative of F at x [ ϖ 1 , ϖ 2 ] is defined as:
ϖ 1 D q F ( x ) = F ( x ) F ( q x + ( 1 q ) ϖ 1 ) ( 1 q ) ( x ϖ 1 ) , x ϖ 1 .
The q -definite integral is defined as:
Definition 5
([11]). Let F : [ ϖ 1 , ϖ 2 ] R be a continuous function. Then the q -definite integral on [ ϖ 1 , ϖ 2 ] is defined as:
ϖ 1 x F ( ν ) ϖ 1 d q ν = ( 1 q ) ( x ϖ 1 ) n = 0 q n F ( q n x + ( 1 q n ) ϖ 1 ) ,
for x [ ϖ 1 , ϖ 2 ] .
Interesting additional details of the following concepts can be found in [9,12].
[ m ] q = 1 q m 1 q , m R .
The q -analogue of power function is defined as, if γ R , then
( r m ) ( γ ) = r γ n = 0 r q n m r q γ + n m , r 0 .
The q -gamma function is defined as:
Γ q ( ν ) = ( 1 q ) ( ν 1 ) ( 1 q ) ν 1 , ν R / { 0 , 1 , 2 , } .
For any s , ν > 0 , the q -beta function is defined as:
B q ( s , ν ) = 0 1 u ( s 1 ) ( 1 q u ) ( ν 1 ) d q u ,
and
B q ( s , ν ) = Γ q ( s ) Γ q ( ν ) Γ q ( s + ν ) .
The q -Pochhammer symbol is defined as:
( m ; q ) 0 = 1 , and ( m ; q ) k = n = 0 k 1 ( 1 q n m )
for k N { } .
Theorem 1
([13]). Suppose λ , μ R , then
lim q 1 ( q λ x ; q ) ( q μ x ; q ) = ( 1 x ) μ λ ,
uniformly on { x C : | x | 1 } , if μ λ , λ + μ 1 , and uniformly on compact subset of { x C : | x | 1 , x 1 } for other choices of μ and λ.
The q -shifting operator is defined as:
ϖ 1 Φ q ( m ) = q m + ( 1 q ) ϖ 1 .
For any positive integer k, one has:
ϖ 1 Φ q k ( m ) = ϖ 1 Φ q k 1 ( ϖ 1 Φ q ( m ) ) , ϖ 1 Φ q 0 ( m ) = m .
The following properties for q -shifting operator hold:
Theorem 2
([9,12]). For any r , m R and for all positive integers k , j , one has:
1. 
ϖ 1 Φ q k ( m ) = ϖ 1 Φ q k ( m ) ;
2. 
ϖ 1 Φ q k ( ϖ 1 Φ q j ( m ) ) = ϖ 1 Φ q j ( ϖ 1 Φ q k ( m ) ) = ϖ 1 Φ q j + k ( m ) ;
3. 
ϖ 1 Φ q ( ϖ 1 ) = ϖ 1 ;
4. 
ϖ 1 Φ q k ( m ) ϖ 1 = q k ( m ϖ 1 ) ;
5. 
m ϖ 1 Φ q k ( m ) = ( 1 q k ) ( m ϖ 1 ) ;
6. 
ϖ 1 Φ q k ( m ) = m ϖ 1 m Φ q k ( 1 ) , for m 0 ;
7. 
ϖ 1 Φ q ( m ) ϖ 1 Φ q k ( r ) = q ( m ϖ 1 Φ q k 1 ( r ) ) .
The power of q -shifting operator is defined as:
ϖ 1 ( r m ) q ( γ ) = ( r ϖ 1 ) γ n = 0 r ϖ 1 Φ q n ( m ) r ϖ 1 Φ q γ + n ( m ) , γ R .
Theorem 3
([9,12]). For any γ , r , m R , r ϖ 1 and k N , one has:
1. 
ϖ 1 ( r m ) q ( k ) = ( r ϖ 1 ) k m ϖ 1 r ϖ 1 ; q k ;
2. 
ϖ 1 ( r m ) q ( γ ) = ( r ϖ 1 ) γ n = 0 1 m ϖ 1 r ϖ 1 q n 1 m ϖ 1 r ϖ 1 q n + γ = ( r ϖ 1 ) γ m ϖ 1 r ϖ 1 ; q m ϖ 1 r ϖ 1 q γ ; q ;
3. 
ϖ 1 ( r ϖ 1 Φ q k ( r ) ) q ( γ ) = ( r ϖ 1 ) γ q k ; q q γ + k ; q .
Definition 6
([9,12]). Let α 0 and F be a continuous function on [ ϖ 1 , ϖ 2 ] . Then the Riemann–Liouville-type fractional quantum integral is given by ( ϖ 1 J q 0 F ) ( ν ) = F ( ν ) and
( ϖ 1 J q α F ) ( x ) = ( ϖ 1 J q α F ( ν ) ) ( x ) = 1 Γ q ( α ) ϖ 1 x ϖ 1 ( x ϖ 1 Φ q ( ν ) ) q ( α 1 ) F ( ν ) ϖ 1 d q ν = ( 1 q ) ( x ϖ 1 ) Γ q ( α ) n = 0 q n ϖ 1 ( x ϖ 1 Φ q n + 1 ( x ) ) q ( α 1 ) F ( ϖ 1 Φ q n ( x ) ) ,
where α > 0 and x [ ϖ 1 , ϖ 2 ] .

3. Results and Discussions

In this section, we will discuss our main results. First of all we define the class of generalized exponential convex functions.
Definition 7.
Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A function F : I R is said to be generalized exponential convex, if
F ( ϖ 1 + τ R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( 1 τ ) F ( ϖ 1 ) χ α ϖ 1 + τ F ( ϖ 2 ) χ α ϖ 2
for all ϖ 1 , ϖ 2 I , τ [ 0 , 1 ] and χ 1 .
Note that if we take α = 0 or χ = 1 , then the class of generalized exponential convex functions reduces to the class of generalized convex functions introduced and studied in [1]. If we take χ = exp , then we have the class of exponentially convex functions involving Raina’s function. This class is defined as:
Definition 8.
Let ρ , λ > 0 and σ = ( σ ( 0 ) , , σ ( k ) , ) be a bounded sequence of positive real numbers. A function F : I R is said to be generalized exponential convex, if
F ( ϖ 1 + τ R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( 1 τ ) F ( ϖ 1 ) exp ( α ϖ 1 ) + τ F ( ϖ 2 ) exp ( α ϖ 2 )
for all ϖ 1 , ϖ 2 I and τ [ 0 , 1 ] .
Now, we derive our auxiliary results. Before we proceed, for the sake of simplicity, we consider Ω = [ ϖ 1 , ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ] and Ω = ( ϖ 1 , ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) .
Lemma 1.
Let F : Ω R be a continuous function and α > 0 . If ϖ 1 D q F is q -integrable on Ω , then
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν .
Proof. 
It suffices to show that
R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 0 ( 1 0 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = S 1 S 2 .
Now,
S 1 = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 0 ( 1 0 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 0 ( 1 0 Φ q ( ν ) ) q ( α ) F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) F ( ϖ 1 + q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) ν 0 d q ν = 1 1 q 0 1 0 ( 1 0 Φ q ( ν ) ) q ( α ) F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ν 0 d q ν 1 1 q 0 1 0 ( 1 0 Φ q ( ν ) ) q ( α ) F ( ϖ 1 + q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ν 0 d q ν = n = 0 q n 0 ( 1 0 Φ q n + 1 ( 1 ) ) q ( α ) F ( ϖ 1 + 0 Φ q n ( 1 ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 Φ q n ( 1 ) n = 0 q n 0 ( 1 0 Φ q n + 1 ( 1 ) ) q ( α ) F ( ϖ 1 + q 0 Φ q n ( 1 ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 Φ q n ( 1 ) = n = 0 ( q n + 1 ; q ) ( q α + n + 1 ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 ( q n + 1 ; q ) ( q α + n + 1 ; q ) F ϖ 1 + q n + 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) = n = 0 ( 1 q α + n ) ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 ( 1 q n + 1 ) ( q n + 2 ; q ) ( q α + n + 1 ; q ) F ϖ 1 + q n + 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) = n = 0 ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 ( q n + 2 ; q ) ( q α + n + 1 ; q ) F ϖ 1 + q n + 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) = n = 0 q α + n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 q n + 2 ( q n + 2 ; q ) ( q α + n + 1 ; q ) F ϖ 1 + q n + 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) = ( q 1 ; q ) ( q α ; q ) F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) F ( ϖ 1 ) n = 0 q α + n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 1 q n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) = ( q 1 ; q ) ( q α ; q ) F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) F ( ϖ 1 ) n = 0 q α + n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 q n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) + ( q 1 ; q ) ( q α ; q ) F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) )
= F ( ϖ 1 ) + ( 1 q n ) n = 0 q n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) = F ( ϖ 1 ) + [ α ] q ( 1 q ) n = 0 q n ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) = F ( ϖ 1 ) + [ α ] q Γ q ( α ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) × ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) Γ q ( α ) n = 0 q n ζ α 1 ( ϖ 2 , ϖ 1 ) ( q n + 1 ; q ) ( q α + n ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) = F ( ϖ 1 ) + Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) × ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) Γ q ( α ) n = 0 q n ζ α 1 ( ϖ 2 , ϖ 1 ) ( q n + 1 ; q ) ( q ( α + 1 ) + ( n + 1 ) ; q ) F ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) = F ( ϖ 1 ) + Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) Γ q ( α ) n = 0 q n ϖ 1 ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ϖ 1 Φ q n + 1 ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) q ( α 1 ) F ϖ 1 Φ q n ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ) = F ( ϖ 1 ) + Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) × 1 Γ q ( α ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 Φ q ( ν ) ) q ( α 1 ) F ν ϖ 1 d q ν = F ( ϖ 1 ) + Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) .
Similarly, we have
S 2 = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) F ( ϖ 1 + q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) ν 0 d q ν = 1 ( 1 q ) [ α + 1 ] q 0 1 F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ν 0 d q ν 1 ( 1 q ) [ α + 1 ] q 0 1 F ( ϖ 1 + q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ν 0 d q ν = 1 [ α + 1 ] q n = 0 F ( ϖ 1 + q n R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) n = 0 F ( ϖ 1 + q n + 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) = F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) F ( ϖ 1 ) [ α + 1 ] q .
Using the equalities (15) and (16) in (14), we obtain the desired result. □
Corollary 1.
Under the assumptions of Lemma 1, if we choose α = 1 , then
1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 1 + q = q R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 + q 0 1 1 ( 1 + q ) ν ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν .
Lemma 2.
Let F : Ω R be a continuous function and α > 0 . If ϖ 1 D q F is q -integrable on Ω , then the following equality holds:
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν + 1 [ α + 1 ] q 1 ( 0 ( 1 Φ q ( ν ) ) q ( α ) ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν .
Proof. 
Let S 3 = 0 1 [ α + 1 ] q ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν . Then
S 3 = 0 1 [ α + 1 ] q ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = 0 1 [ α + 1 ] q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) F ( ϖ 1 + q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) ν 0 d q ν = 1 ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ν 0 d q ν 1 ( 1 q ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q F ( ϖ 1 + q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ν 0 d q ν = 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q n = 0 q n F ϖ 1 + q n [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) q n [ α + 1 ] q 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q n = 0 q n F ϖ 1 + q n + 1 [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) q n [ α + 1 ] q = 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 F ϖ 1 + q n [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) n = 0 F ϖ 1 + q n + 1 [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) = 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q F ( ϖ 1 ) .
By (15), we have
S 1 = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 0 ( 1 0 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = F ( ϖ 1 ) + Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) .
Using the equalities (19) and (20), we have
R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν + 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν 0 1 0 ( 1 Φ q ( ν ) ) q ( α ) ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q F ( ϖ 1 ) 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ( ϖ 1 ) + Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) = F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) .
This completes the proof. □
Corollary 2.
Under the assumptions of Lemma 2, if we take α = 1 , then the following result holds:
F ( 1 + q ) ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 + q 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν = q R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 1 + q ν ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν + 1 1 + q 1 ν 1 q ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν .
Theorem 4.
Let F : Ω R be a continuous function and α > 0 and ϖ 1 D q F be q -integrable on Ω . If | ϖ 1 D q F | is generalized exponential convex on Ω, then
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q ( A 1 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 + A 2 | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 ) ,
where
A 1 = 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ( 1 ν ) 0 d q ν ,
and
A 2 = 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ν 0 d q ν .
Proof. 
Using the Lemma (17), property of modulus and the generalized exponential convexity of | ϖ 1 D q F | , we have
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ( 1 ν ) | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 + ν | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ν 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q ( | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 A 1 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 A 2 ) ,
which completes the proof. □
Corollary 3.
Under the assumptions of Theorem 4, if we choose α = 1 , then we have
1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 1 + q q 2 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ( 1 + q ) 4 A 1 * | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 + A 2 * | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 ,
where
A 1 * = q + 3 q 3 + 2 q 4 1 + q + q 2 ,
and
A 2 * = 1 + 4 q + q 2 1 + q + q 2 .
Theorem 5.
Let F : Ω R be a continuous function and α > 0 and ϖ 1 D q F be q -integrable on Ω . If | ϖ 1 D q F | r is generalized exponential convex on Ω for r > 1 and p 1 + r 1 = 1 , then the following inequality holds:
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q A 3 1 p q | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + | ϖ 1 D q F ( ϖ 2 ) r 1 + q 1 r ,
where
A 3 = 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 p 0 d q ν .
Proof. 
Using Lemma (17), Hölder’s integral inequality and generalized exponential convexity of | ϖ 1 D q F | r , we have
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 p 0 d q ν 1 p 0 1 | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | r 0 d q ν 1 r R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 p 0 d q ν 1 p × | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r 0 1 ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 1 ν 0 d q ν 1 r = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 p 0 d q ν 1 p q | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 + q 1 r ,
which completes the proof. □
Corollary 4.
Under the assumptions of Theorem 5, if we choose α = 1 , then we have
1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 1 + q q R ρ , λ , σ ( ϖ 2 ϖ 1 ) ( 1 + q ) A 3 * 1 p q | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + | ϖ 1 D q F ( ϖ 2 ) r 1 + q 1 r ,
where
A 3 * = 0 1 1 ( 1 + q ) ν p 0 d q ν .
Theorem 6.
Let F : Ω R be a continuous function and α > 0 and ϖ 1 D q F be q -integrable on Ω . If | ϖ 1 D q F | r is generalized exponential convex on Ω for r 1 , then the following inequality holds:
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q A 4 1 1 r A 1 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + A 2 | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 r ,
where A 1 , A 2 are given in Theorem 4 and A 4 is given as:
A 4 = 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 0 d q ν .
Proof. 
Using Lemma (17), the power mean integral inequality and generalized exponential convexity of | ϖ 1 D q F | r , we have
Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) ( [ α + 1 ] q 1 ) F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 0 d q ν 1 1 r × 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | r 0 d q ν 1 r R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 0 d q ν 1 1 r × 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r ( 1 ν ) + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r ν 0 d q ν 1 r R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 0 d q ν 1 1 r × | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r 0 1 [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r [ α + 1 ] q 0 ( 1 0 Φ q ( ν ) ) q ( α ) 1 ν 0 d q ν 1 r = R ρ , λ , σ ( ϖ 2 ϖ 1 ) [ α + 1 ] q A 4 1 1 r A 1 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + A 3 | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 r ,
which completes the proof. □
Corollary 5.
Under the assumptions of Theorem 6, if we choose α = 1 , then we have
1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q F ( ϖ 1 ) + F ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) 1 + q q R ρ , λ , σ ( ϖ 2 ϖ 1 ) ( 1 + q ) A 4 * 1 1 r A 1 * | ϖ 1 D q F ( ϖ 1 ) | r χ α ϖ 1 + A 2 * | ϖ 1 D q F ( ϖ 2 ) | r χ α ϖ 2 1 r ,
where A 1 * , A 2 * are already defined in Corollary 3 and
A 4 * = 2 q + q 2 + q 4 ( 1 + q ) 3 .
Theorem 7.
Let F : Ω R be a continuous function and α > 0 and ϖ 1 D q F be q -integrable on Ω . If | ϖ 1 D q F | is generalized exponential convex on Ω, then
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) ( A 5 + A 7 ) | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 + ( A 6 + A 8 ) | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 ,
where
A 5 = 0 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) ( 1 ν ) 0 d q ν A 6 = 0 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) ν 0 d q ν A 7 = 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ( 1 ν ) 0 d q ν A 8 = 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ν 0 d q ν .
Proof. 
Using Lemma (21) and the generalized exponential convexity of | ϖ 1 D q F | , we have
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | [ ( 1 ν ) | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 + ν | ϖ 1 D q F ( ϖ 2 ) ] 0 d q ν + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | [ ( 1 ν ) | ϖ 1 D q F ( ϖ 1 ) + ν | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 ] 0 d q ν = R ρ , λ , σ ( ϖ 2 ϖ 1 ) | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | ( 1 ν ) 0 d q ν + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) q ( α ) ) | ν 0 d q ν + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ν 0 d q ν .
This completes the proof. □
Corollary 6.
Under the assumptions of Theorem 7, if we set α = 1 , then we have the following inequality
F ( 1 + q ) ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 + q 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q R ρ , λ , σ ( ϖ 2 ϖ 1 ) ( 1 + q + q 2 ) ( 1 + q ) 4 3 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 + ( 2 q 2 + 2 q 1 ) | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 .
Theorem 8.
Let F : Ω R be a continuous function and α > 0 and ϖ 1 D q F be q -integrable on Ω . If | ϖ 1 D q F | r is generalized exponential convex on Ω, then the following inequality holds for p 1 + r 1 = 1 :
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) A 9 1 p | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r ( 1 + q ) [ α + 1 ] q 1 ( 1 + q ) ( [ α + 1 ] q ) 2 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 ( 1 + q ) ( [ α + 1 ] q ) 2 1 r + A 10 1 p | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r q 1 + q ( 1 + q ) [ α + 1 ] q 1 ( 1 + q ) ( [ α + 1 ] q ) 2 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 1 + q 1 ( 1 + q ) ( [ α + 1 ] q ) 2 1 r ,
where
A 9 = 0 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) 0 d q ν ,
and
A 10 = 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν .
Proof. 
Using Lemma (21), Hölder’s inequality and the generalized exponential convexity of | ϖ 1 D q F | r , we have
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | p 0 d q ν 1 p 1 [ α + 1 ] q 1 | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | r 0 d q ν 1 r + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | p 0 d q ν 1 p 1 [ α + 1 ] q 1 | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | r 0 d q ν 1 r R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | p 0 d q ν 1 p × | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 1 [ α + 1 ] q ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 1 [ α + 1 ] q ν 0 d q ν 1 r + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | p 0 d q ν 1 p × | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r 1 [ α + 1 ] q 1 ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 [ α + 1 ] q 1 ν 0 d q ν 1 r
= R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | p 0 d q ν 1 p × | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r ( 1 + q ) [ α + 1 ] q 1 ( 1 + q ) ( [ α + 1 ] q ) 2 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 ( 1 + q ) ( [ α + 1 ] q ) 2 1 r + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | p 0 d q ν 1 p × | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r q 1 + q ( 1 + q ) [ α + 1 ] q 1 ( 1 + q ) ( [ α + 1 ] q ) 2 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 1 + q 1 ( 1 + q ) ( [ α + 1 ] q ) 2 1 r .
This completes the proof. □
Corollary 7.
Under the assumptions of Theorem 8, if we set α = 1 , then
F ( 1 + q ) ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 + q 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q R ρ , λ , σ ( ϖ 2 ϖ 1 ) A 9 * 1 p | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r q 2 + 2 q ( 1 + q ) 3 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 ( 1 + q ) 3 1 r + A 10 * 1 p | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r q 3 + q 2 q ( 1 + q ) 3 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r q 2 + 2 q ( 1 + q ) 3 1 r ,
where
A 9 * = ( 1 q ) ( 1 + q ) p + 1 ( 1 q p + 1 )
and
A 10 * = 1 1 + q 1 1 q ν p 0 d q ν .
Theorem 9.
Let F : Ω R be a continuous function and α > 0 and ϖ 1 D q F be q -integrable on Ω . If | ϖ 1 D q F | r , r 1 is generalized exponential convex on Ω, then
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) = R ρ , λ , σ ( ϖ 2 ϖ 1 ) A 9 1 1 r A 5 | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r + A 6 | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 r + A 10 1 1 r A 7 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + A 8 | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 r ,
where
A 9 = 0 1 [ α + 1 ] q 1 0 ( 1 Φ q ( ν ) ) q ( α ) 0 d q ν
and
A 10 = 1 [ α + 1 ] q 1 | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν .
Proof. 
Using Lemma (21), power mean integral inequality and the generalized exponential convexity of | ϖ 1 D q F | r , we have
F ( [ α + 1 ] q 1 ) ϖ 1 + ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) [ α + 1 ] q Γ q ( α + 1 ) R ρ , λ , σ α ( ϖ 2 ϖ 1 ) ( ϖ 1 J q α F ) ( ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | 0 d q ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν 1 1 r × 1 [ α + 1 ] q 1 | 1 0 ( 1 Φ q ( ν ) q ( α ) ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | r 0 d q ν 1 r + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν 1 1 r × 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | | ϖ 1 D q F ( ϖ 1 + ν R ρ , λ , σ ( ϖ 2 ϖ 1 ) ) | r 0 d q ν 1 r R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν 1 1 r × 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) q ( α ) ) | ( 1 ν ) | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r + ν | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 d q ν 1 r + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν 1 1 r × 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ( 1 ν ) | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r + ν | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 d q ν 1 r = R ρ , λ , σ ( ϖ 2 ϖ 1 ) 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν 1 1 r × | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) ) q ( α ) | ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 0 1 [ α + 1 ] q | 1 0 ( 1 Φ q ( ν ) q ( α ) ) | ν 0 d q ν 1 r + 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | 0 d q ν 1 1 r × | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ( 1 ν ) 0 d q ν + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 [ α + 1 ] q 1 | 0 ( 1 Φ q ( ν ) ) q ( α ) | ν 0 d q ν 1 r .
This completes the proof. □
Corollary 8.
Under the assumptions of Theorem 9, if we set α = 1 , then
F ( 1 + q ) ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 + q 1 R ρ , λ , σ ( ϖ 2 ϖ 1 ) ϖ 1 ϖ 1 + R ρ , λ , σ ( ϖ 2 ϖ 1 ) F ν ϖ 1 d q ν q R ρ , λ , σ ( ϖ 2 ϖ 1 ) 1 ( 1 + q ) 3 | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r q 2 + q ( 1 + q + q 2 ) + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 1 ( 1 + q + q 2 ) 1 r + | ϖ 1 D q F ( ϖ 1 ) | χ α ϖ 1 r q 2 + q 1 1 + q + q 2 + | ϖ 1 D q F ( ϖ 2 ) | χ α ϖ 2 r 2 1 + q + q 2 1 r .

4. Conclusions

We have introduced the class of generalized exponential convex functions involving Raina’s function. We have derived two new identities involving q-Riemann–Liouville fractional integrals. Using these identities, as auxiliary results, we have derived several new q-fractional estimates of trapezoidal-like inequalities, essentially using the class of generalized exponential convex functions. We hope that the ideas within this paper will inspire interested readers. The results of this paper can be extended by using other classes of convexity, for instance by using the exponential preinvexity property of the functions. One can also extend these results using the concepts of post-quantum calculus, which is an interesting problem for future research. It is worth mentioning here that many inequalities e.g., Lipschitz, Hölders, Minkowski, etc., are used to solve the control problems and stability analysis for dynamical systems; for details, see [14,15,16,17,18,19]. So it can also be an interesting problem for future research to use the inequalities obtained in this paper to solve physical problems.

Author Contributions

Conceptualization, M.U.A.; formal analysis, K.N., M.U.A., M.Z.J. and H.B.; investigation, K.N., M.U.A., M.Z.J., H.B. and M.A.N.; writing—original draft preparation, K.N., M.U.A., M.Z.J., H.B. and M.A.N.; supervision, M.A.N.; All authors have read and agreed to the published version of the manuscript.

Funding

This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cortez, M.V.J.; Liko, R.; Kashuri, A.; Hernández, J.E.H. New quantum estimates of trapezium—Type inequalities for generalized φ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
  2. Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
  3. Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
  4. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite—Hadamard Inequality and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
  5. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite—Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  6. Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
  7. Kunt, M.; Aljasem, M. Fractional quantum Hermite-Hadamard type inequalities. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
  8. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  9. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
  10. Zhang, Y.; Du, T.-S.; Wang, H.; Shen, Y.-J. Different types of quantum integral inequalities via (α,m)-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
  11. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Diff. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
  12. Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Diff. Equ. 2015, 18, 1–19. [Google Scholar] [CrossRef] [Green Version]
  13. Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
  14. Cheng, Y.; Huo, L.; Zhao, L. Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination. Chaos Solitons Fractals 2022, 157, 111931. [Google Scholar] [CrossRef]
  15. Mahmudov, N.I. Finite–approximate controllability of Riemann—Liouville fractional evolution systems via resolvent—Like operators. Fractal Fract. 2021, 5, 199. [Google Scholar] [CrossRef]
  16. Patel, R.; Shukla, A.; Jadon, S.S. Existence and optimal control problem for semilinear fractional order (1,2] control system. Math. Meth. Appl. Sci. 2020, 43, 1–12. [Google Scholar] [CrossRef]
  17. Shukla, A.; Sukavanam, N.; Pandey, D.N. Complete controllability of semi–linear stochastic system with delay. Rend. Circ. Mat. Palermo 2015, 64, 209–220. [Google Scholar] [CrossRef]
  18. Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional control systems of order α∈(1,2] with infinite delay. Mediterranean J. Math. 2016, 13, 2539–2550. [Google Scholar] [CrossRef]
  19. Singh, A.; Shukla, A.; Vijayakumar, V.; Udhayakumar, R. Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces. Chaos Solitons Fractals 2021, 150, 111095. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Nonlaopon, K.; Awan, M.U.; Javed, M.Z.; Budak, H.; Noor, M.A. Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal Fract. 2022, 6, 185. https://doi.org/10.3390/fractalfract6040185

AMA Style

Nonlaopon K, Awan MU, Javed MZ, Budak H, Noor MA. Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal and Fractional. 2022; 6(4):185. https://doi.org/10.3390/fractalfract6040185

Chicago/Turabian Style

Nonlaopon, Kamsing, Muhammad Uzair Awan, Muhammad Zakria Javed, Hüseyin Budak, and Muhammad Aslam Noor. 2022. "Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function" Fractal and Fractional 6, no. 4: 185. https://doi.org/10.3390/fractalfract6040185

APA Style

Nonlaopon, K., Awan, M. U., Javed, M. Z., Budak, H., & Noor, M. A. (2022). Some q-Fractional Estimates of Trapezoid like Inequalities Involving Raina’s Function. Fractal and Fractional, 6(4), 185. https://doi.org/10.3390/fractalfract6040185

Article Metrics

Back to TopTop