Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function
Abstract
:1. Introduction
2. Main Results
- (i)
- If is an increasing function, then
- (ii)
- If is decreasing function, then
- (iii)
- If is a convex function, then
- (i)
- Since and is an increasing function, this implies
- (ii)
- (iii)
- (i)
- If is an increasing function, then
- (ii)
- If is a decreasing function, then
- (iii)
- If is a convex function, then
3. Some Applications to Special Means
- (i)
- The arithmetic mean:
- (ii)
- The logarithmic mean:
- (iii)
- The generalized logarithmic mean:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On Certain Fractional Calculus Operators and Their Applications in Mathematical Physics. Phys. Scr. 2020, 95, 115210. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Nisar, K.S.; Kumar, D. On (k,s)-Hilfer Prabhakar Fractional Derivative with Applications in Mathematical Physics. Front. Phys. 2020, 8, 309. [Google Scholar] [CrossRef]
- Tarasov, V.E. On History of Mathematical Economics, Application of Fractional Calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F. On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk. Mathematics 2020, 8, 641. [Google Scholar] [CrossRef] [Green Version]
- Samraiz, M.; Umer, M.; Kashuri, A.; Abdeljawad, T.; Iqbal, S.; Mlaiki, N. On Weighted (k,s)-Riemann-Liouville Fractional Operators and Solution of Fractional Kinetic Equation. Fractal. Frac. 2021, 5, 118. [Google Scholar] [CrossRef]
- Johansyah, M.D.; Supriatna, A.K.; Rusyaman, E.; Saputra, J. Application of fractional differential equation in economic growth model: A systematic review approach. AIMS Math. 2021, 6, 10266–10280. [Google Scholar] [CrossRef]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 117. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M.; Assiri, T.; Atangana, A. Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative. Adv. Differ. Equ. 2020, 2020, 334. [Google Scholar] [CrossRef]
- Khan, T.U.; Khan, M.A. Generalized conformable fractional operator. J. Comput. Appl. Math. 2019, 346, 378–389. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications: A Contemporary Approach; CMC Books in Mathematics; Springer: New York, NY, USA, 2004. [Google Scholar]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Application; Acadmic Press: New York, NY, USA, 1992. [Google Scholar]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M. On some Hermite-Hadamard inequalities involving k-fractional operators. J. Inequal. Appl. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Khan, M.A.; Iqbal, A.; Suleman, M.; Chu, Y.-M. The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green’s function. AIP Adv. 2020, 10, 045032. [Google Scholar]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals. J. Inequal. Appl. 2020, 2020, 591. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Ozdemir, M.O.; Dragomir, S.S. On the Hadamard-type of inequalities involving several kinds of convexity. J. Inequal. Appl. 2010, 2010, 286845. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg Math. 2007, 15, 179–192. [Google Scholar]
- Mehmood, N.; Agarwal, R.P.; Butt, S.I.; Pecaric, J.E. New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity. J. Inequal. Appl. 2017, 2017, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Samraiz, M.; Gul, A.; Vivas-Cortez, M.; Rahman, G. Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function. Fractal Fract. 2022, 6, 126. https://doi.org/10.3390/fractalfract6030126
Li Y, Samraiz M, Gul A, Vivas-Cortez M, Rahman G. Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function. Fractal and Fractional. 2022; 6(3):126. https://doi.org/10.3390/fractalfract6030126
Chicago/Turabian StyleLi, Yixia, Muhammad Samraiz, Ayesha Gul, Miguel Vivas-Cortez, and Gauhar Rahman. 2022. "Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function" Fractal and Fractional 6, no. 3: 126. https://doi.org/10.3390/fractalfract6030126
APA StyleLi, Y., Samraiz, M., Gul, A., Vivas-Cortez, M., & Rahman, G. (2022). Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function. Fractal and Fractional, 6(3), 126. https://doi.org/10.3390/fractalfract6030126