On Transformation Involving Basic Analogue to the Aleph-Function of Two Variables
Abstract
:1. Introduction
2. Basic Analogue to Aleph-Function of Two Variables
3. Main Formulas
4. Leibniz’s Formula
5. Particular Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, D.; Choi, J. Generalized fractional kinetic equations associated with Aleph function. Proc. Jangjeon Math. Soc. 2016, 19, 145–155. [Google Scholar]
- Kumar, D.; Gupta, R.K.; Shaktawat, B.S.; Choi, J. Generalized fractional calculus formulas involving the product of Aleph-function and Srivastava polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 701–717. [Google Scholar]
- Kumar, D.; Ram, J.; Choi, J. Certain generalized integral formulas involving Chebyshev Hermite polynomials, generalized M-series and Aleph-function, and their application in heat conduction. Int. J. Math. Anal. 2015, 9, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Ram, J.; Kumar, D. Generalized fractional integration of the ℵ-function. J. Raj. Acad. Phy. Sci. 2011, 10, 373–382. [Google Scholar]
- Samko, G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: New York, NY, USA, 1993. [Google Scholar]
- Südland, N.; Volkmann, J.; Kumar, D. Applications to give an analytical solution to the Black Scholes equation. Integral Transform. Spec. Funct. 2019, 30, 205–230. [Google Scholar] [CrossRef]
- Exton, H. q-hypergeometric functions and applications. Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK, 1983; 347p. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Al-Salam, W.A. q-analogues of Cauchy’s formula. Proc. Am. Math. Soc. 1952–1953, 17, 182–184. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Phil. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Kumar, D.; Ayant, F.Y.; Tariboon, J. On transformation involving basic analogue of multivariable H-function. J. Funct. Spaces 2020, 2020, 2616043. [Google Scholar] [CrossRef]
- Sahni, N.; Kumar, D.; Ayant, F.Y.; Singh, S. A transformation involving basic multivariable I-function of Prathima. J. Ramanujan Soc. Math. Math. Sci. 2021, 8, 95–108. [Google Scholar]
- Yadav, R.K.; Purohit, S.D. On applications of Weyl fractional q-integral operator to generalized basic hypergeometric functions. Kyungpook Math. J. 2006, 46, 235–245. [Google Scholar]
- Yadav, R.K.; Purohit, S.D.; Kalla, S.L.; Vyas, V.K. Certain fractional q-integral formulae for the generalized basic hypergeometric functions of two variables. J. Inequal. Spec. Funct. 2010, 1, 30–38. [Google Scholar]
- Yadav, R.K.; Purohit, S.D.; Vyas, V.K. On transformations involving generalized basic hypergeometric function of two variables. Rev. Téc. Ing. Univ. Zulia. 2010, 33, 176–182. [Google Scholar]
- Purohit, S.D.; Yadav, R.K. On generalized fractional q-integral operators involving the q-gauss hypergeometric function. Bull. Math. Anal. Appl. 2010, 2, 35–44. [Google Scholar]
- Galué, L. Generalized Erdélyi-Kober fractional q-integral operator. Kuwait J. Sci. Eng. 2009, 36, 21–34. [Google Scholar]
- Kumar, D. Generalized fractional differintegral operators of the Aleph-function of two variables. J. Chem. Biol. Phys. Sci. Sec. C 2016, 6, 1116–1131. [Google Scholar]
- Jia, Z.; Khan, B.; Agarwal, P.; Hu, Q.; Wang, X. Two new Bailey Lattices and their applications. Symmetry 2021, 13, 958. [Google Scholar] [CrossRef]
- Jia, Z.; Khan, B.; Hu, Q.; Niu, D. Applications of generalized q-difference equations for general q-polynomials. Symmetry 2021, 13, 1222. [Google Scholar] [CrossRef]
- Sharma, C.K.; Mishra, P.L. On the I-function of two variables and its certain properties. Acta Cienc. Indica 1991, 17, 1–4. [Google Scholar]
- Saxena, R.K.; Modi, G.C.; Kalla, S.L. A basic analogue of H-function of two variable. Rev. Tec. Ing. Univ. Zulia 1987, 10, 35–39. [Google Scholar]
- Ahmad, A.; Jain, R.; Jain, D.K. q-analogue of Aleph-function and its transformation formulae with q-derivative. J. Stat. Appl. Pro. 2017, 6, 567–575. [Google Scholar] [CrossRef]
- Saxena, R.K.; Modi, G.C.; Kalla, S.L. A basic analogue of Fox’s H-function. Rev. Tec. Ing. Univ. Zulia 1983, 6, 139–143. [Google Scholar]
- Ayant, F.Y.; Kumar, D. Certain finite double integrals involving the hypergeometric function and Aleph-function. Int. J. Math. Trends Technol. 2016, 35, 49–55. [Google Scholar] [CrossRef]
- Agarwal, R. A basic analogue of MacRobert’s E-function. Glasg. Math. J. 1961, 5, 4–7. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Baleanu, D.; Ayant, F.; Südland, N. On Transformation Involving Basic Analogue to the Aleph-Function of Two Variables. Fractal Fract. 2022, 6, 71. https://doi.org/10.3390/fractalfract6020071
Kumar D, Baleanu D, Ayant F, Südland N. On Transformation Involving Basic Analogue to the Aleph-Function of Two Variables. Fractal and Fractional. 2022; 6(2):71. https://doi.org/10.3390/fractalfract6020071
Chicago/Turabian StyleKumar, Dinesh, Dumitru Baleanu, Frédéric Ayant, and Norbert Südland. 2022. "On Transformation Involving Basic Analogue to the Aleph-Function of Two Variables" Fractal and Fractional 6, no. 2: 71. https://doi.org/10.3390/fractalfract6020071
APA StyleKumar, D., Baleanu, D., Ayant, F., & Südland, N. (2022). On Transformation Involving Basic Analogue to the Aleph-Function of Two Variables. Fractal and Fractional, 6(2), 71. https://doi.org/10.3390/fractalfract6020071