Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay
Abstract
:1. Introduction
2. Preliminaries
3. The General Solution of Homogeneous System
4. Existence and Uniqueness of the Solution
5. Ulam Type Stability Results of (2)
- (a)
- .
- (b)
- .
- (c)
- .
- (d)
- .
- (a)
- .
- (b)
- .
- (c)
- .
- (d)
- .
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2001. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sabatier, J.; Agrawal, O.; Machado, J. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Wang, J.; Fečkan, M.; Zhou, Y. Center stable manifold for planar fractional damped equations. Appl. Math. Comput. 2017, 296, 257–269. [Google Scholar] [CrossRef]
- Singh, B.K.; Agrawal, S. Study of time fractional proportional delayed multi-pantograph system and integro-differential equations. Math. Methods Appl. Sci. 2022, 45, 8305–8328. [Google Scholar] [CrossRef]
- Nieto, J.J. Fractional Euler numbers and generalized proportional fractional logistic differential equation. Fract. Calc. Appl. Anal. 2022, 25, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Kaviya, R.; Priyanka, M.; Muthukumar, P. Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model. Chaos Solitons Fractals 2022, 160, 112070. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Wang, S. Optimal control of nonlinear hybrid systems driven by signed measures with variable intensities and supports. SIAM J. Control Optim. 2021, 59, 4268–4294. [Google Scholar] [CrossRef]
- Sisodiya, O.S.; Misra, O.P.; Dhar, J. Modeling effects of impulsive control strategies on the spread of mosquito borne disease: Role of latent period. J. Appl. Math. Comput. 2021, 68, 2589–2615. [Google Scholar] [CrossRef]
- Yang, D.; Wang, J.; O’Regan, D. On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses. Comptes Rendus Math. 2018, 356, 150–171. [Google Scholar] [CrossRef]
- Cao, W.; Pan, T. Dynamics of an impulsive stochastic SIR epidemic model with saturated incidence rate. J. Appl. Anal. Comput. 2020, 10, 1396–1415. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Li, X. Global exponential synchronization of interval neural networks with mixed delays via delayed impulsive control. Neurocomputing 2021, 420, 290–298. [Google Scholar] [CrossRef]
- Fečkan, M.; Zhou, Y.; Wang, J. On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3050–3060. [Google Scholar] [CrossRef]
- Ali, A.; Rabiei, F.; Shah, K. On Ulam’s type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions. J. Nonlinear Sci. Appl. 2017, 10, 4760–4775. [Google Scholar] [CrossRef] [Green Version]
- Church, K.E.M. Uniqueness of solutions and linearized stability for impulsive differential equations with state-dependent delay. J. Differ. Equ. 2022, 338, 415–440. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. On the stability of first order impulsive evolution equations. Opusc. Math. 2014, 34, 639–657. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, Y. A class of nonlinear differential equations with fractional integrable impulses. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3001–3010. [Google Scholar] [CrossRef]
- Li, S.; Shu, L.; Shu, X.; Xu, F. Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastics 2019, 91, 857–872. [Google Scholar] [CrossRef]
- You, Z.; Wang, J.; O’Regan, D.; Zhou, Y. Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices. Math. Methods Appl. Sci. 2019, 42, 954–968. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Fečkan, M. Controllability of conformable differential systems. Nonlinear Anal. Model. Control 2020, 25, 658–674. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Existence results and Ulam type stability for a conformable fractional oscillating system with pure delay. Chaos Solitons Fract. 2022, 161, 112317. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, D.; Fang, Y. Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 2015, 40, 1–6. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D.; Huang, L. Novel Mittag–Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Aimene, D.; Seba, D.; Laoubi, K. Controllability of impulsive fractional functional evolution equations with infinite state-dependent delay in Banach spaces. Math. Methods Appl. Sci. 2021, 44, 7979–7994. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problem; Hassell Street Press: New York, NY, USA, 1968. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhou, Y.; Fečkan, M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 2012, 64, 3389–3405. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Methods Appl. Sci. 2018, 41, 2392–2402. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Alzabut, J. Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonstr. Math. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Ulam type stability for non-instantaneous impulsive Caputo fractional differential equations with finite state dependent delay. Georgian Math. J. 2021, 28, 499–517. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Li, M. Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal Fract. 2022, 6, 742. https://doi.org/10.3390/fractalfract6120742
Chen C, Li M. Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal and Fractional. 2022; 6(12):742. https://doi.org/10.3390/fractalfract6120742
Chicago/Turabian StyleChen, Chaowen, and Mengmeng Li. 2022. "Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay" Fractal and Fractional 6, no. 12: 742. https://doi.org/10.3390/fractalfract6120742
APA StyleChen, C., & Li, M. (2022). Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal and Fractional, 6(12), 742. https://doi.org/10.3390/fractalfract6120742