Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay
Abstract
1. Introduction
2. Preliminaries
3. The General Solution of Homogeneous System
4. Existence and Uniqueness of the Solution
5. Ulam Type Stability Results of (2)
- (a)
- .
- (b)
- .
- (c)
- .
- (d)
- .
- (a)
- .
- (b)
- .
- (c)
- .
- (d)
- .
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2001. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sabatier, J.; Agrawal, O.; Machado, J. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Wang, J.; Fečkan, M.; Zhou, Y. Center stable manifold for planar fractional damped equations. Appl. Math. Comput. 2017, 296, 257–269. [Google Scholar] [CrossRef]
- Singh, B.K.; Agrawal, S. Study of time fractional proportional delayed multi-pantograph system and integro-differential equations. Math. Methods Appl. Sci. 2022, 45, 8305–8328. [Google Scholar] [CrossRef]
- Nieto, J.J. Fractional Euler numbers and generalized proportional fractional logistic differential equation. Fract. Calc. Appl. Anal. 2022, 25, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Kaviya, R.; Priyanka, M.; Muthukumar, P. Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model. Chaos Solitons Fractals 2022, 160, 112070. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Wang, S. Optimal control of nonlinear hybrid systems driven by signed measures with variable intensities and supports. SIAM J. Control Optim. 2021, 59, 4268–4294. [Google Scholar] [CrossRef]
- Sisodiya, O.S.; Misra, O.P.; Dhar, J. Modeling effects of impulsive control strategies on the spread of mosquito borne disease: Role of latent period. J. Appl. Math. Comput. 2021, 68, 2589–2615. [Google Scholar] [CrossRef]
- Yang, D.; Wang, J.; O’Regan, D. On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses. Comptes Rendus Math. 2018, 356, 150–171. [Google Scholar] [CrossRef]
- Cao, W.; Pan, T. Dynamics of an impulsive stochastic SIR epidemic model with saturated incidence rate. J. Appl. Anal. Comput. 2020, 10, 1396–1415. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Li, X. Global exponential synchronization of interval neural networks with mixed delays via delayed impulsive control. Neurocomputing 2021, 420, 290–298. [Google Scholar] [CrossRef]
- Fečkan, M.; Zhou, Y.; Wang, J. On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3050–3060. [Google Scholar] [CrossRef]
- Ali, A.; Rabiei, F.; Shah, K. On Ulam’s type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions. J. Nonlinear Sci. Appl. 2017, 10, 4760–4775. [Google Scholar] [CrossRef]
- Church, K.E.M. Uniqueness of solutions and linearized stability for impulsive differential equations with state-dependent delay. J. Differ. Equ. 2022, 338, 415–440. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. On the stability of first order impulsive evolution equations. Opusc. Math. 2014, 34, 639–657. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. A class of nonlinear differential equations with fractional integrable impulses. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3001–3010. [Google Scholar] [CrossRef]
- Li, S.; Shu, L.; Shu, X.; Xu, F. Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastics 2019, 91, 857–872. [Google Scholar] [CrossRef]
- You, Z.; Wang, J.; O’Regan, D.; Zhou, Y. Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices. Math. Methods Appl. Sci. 2019, 42, 954–968. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Fečkan, M. Controllability of conformable differential systems. Nonlinear Anal. Model. Control 2020, 25, 658–674. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Existence results and Ulam type stability for a conformable fractional oscillating system with pure delay. Chaos Solitons Fract. 2022, 161, 112317. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, D.; Fang, Y. Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 2015, 40, 1–6. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D.; Huang, L. Novel Mittag–Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Aimene, D.; Seba, D.; Laoubi, K. Controllability of impulsive fractional functional evolution equations with infinite state-dependent delay in Banach spaces. Math. Methods Appl. Sci. 2021, 44, 7979–7994. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problem; Hassell Street Press: New York, NY, USA, 1968. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, Y.; Fečkan, M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 2012, 64, 3389–3405. [Google Scholar] [CrossRef]
- Wang, J.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Methods Appl. Sci. 2018, 41, 2392–2402. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Alzabut, J. Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonstr. Math. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Ulam type stability for non-instantaneous impulsive Caputo fractional differential equations with finite state dependent delay. Georgian Math. J. 2021, 28, 499–517. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Li, M. Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal Fract. 2022, 6, 742. https://doi.org/10.3390/fractalfract6120742
Chen C, Li M. Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal and Fractional. 2022; 6(12):742. https://doi.org/10.3390/fractalfract6120742
Chicago/Turabian StyleChen, Chaowen, and Mengmeng Li. 2022. "Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay" Fractal and Fractional 6, no. 12: 742. https://doi.org/10.3390/fractalfract6120742
APA StyleChen, C., & Li, M. (2022). Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal and Fractional, 6(12), 742. https://doi.org/10.3390/fractalfract6120742