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Abstract: Through literature retrieval and classification, it can be found that for the fractional delay
impulse differential system, the existence and uniqueness of the solution and UHR stability of the
fractional delay impulse differential system are rarely studied by using the polynomial function of the
fractional delay impulse matrix. In this paper, we firstly introduce a new concept of impulsive delayed
Mittag-Leffler type solution vector function, which helps us to construct a representation of an exact
solution for the linear impulsive fractional differential delay equations (IFDDEs). Secondly, by using
Banach’s and Schauder’s fixed point theorems, we derive some sufficient conditions to guarantee
the existence and uniqueness of solutions of nonlinear IFDDEs. Finally, we obtain the Ulam-Hyers
stability (UHs) and Ulam-Hyers—Rassias stability (UHRs) for a class of nonlinear IFDDEs.
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1. Introduction

Fractional calculus and fractional differential equations (FDEs) have been widely ap-
plied in mechanics, physics, biological and the other fields of science and engineering [1-6].
In recent decades, there has been an explosion in searching for the existence, uniqueness,
stability and controllability of impulsive differential equations (IDEs) as researchers in
epidemic, optimal control, mechanical and engineering studies are pouring into the field of
research; we refer the reader to [7-12].

Impulsive fractional differential equations (IFDEs) have attracted great interest due to
their potential applications in modeling dynamical systems involving genetic phenomena
and mutations. Among the numerous research results, it is worth noting that the authors
in [13] introduced a formula for solutions of the Cauchy problem of IFDEs and gave a
counter example to prove that the previous results were incorrect. For more research results
on the recent advances of existence, uniqueness, exponential stability, uniform stability and
continuous dependence of IFDEs, one can see the research papers [13-20].

Meanwhile, impulsive fractional differential delay equations and fractional differential
delay equations (FDDEs) are widely used to characterize the situation of their states
depending on the previous time interval subject to abrupt changes. In [21], the authors
obtained finite-time stability of solution for FDDEs by using the delayed single parameter
Mittag-Leffler type matrix function. In [22], the authors introduced a concept of a delayed
two parameter Mittag-Leffler type matrix function and gave an explicit formula of a
solution for FDDEs. In [23], an explicit solution of the conformable FDDEs was given and
the UH and UHR stability were discussed.

In [24], some sufficient conditions for the finite-time stability of IFDDEs were obtained
by using the generalized Bellman—-Gronwall’s inequality, which extended some known
results. In [25], the authors proposed a class of linear fractional difference equations with
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discrete-time delay and impulse effects. In [26], the authors studied the controllability
of an impulsive fractional differential equation with infinite state-dependent delay in an
arbitrary Banach space.

Motivated by [21-23], we first study the analytic representation of a solution of lin-
ear IFDDEs:

(“Dfez)(x) = Az(x —h) + g(x), x #x, h >0, x €],
z(x) =z(x])+C;, x =x;, i =1,2,...,7(T,0), 1)
() @(x), —h<x<0,

where CID)‘(’)‘+Z(-)(0 < a < 1) is the Caputo derivative, A € R"*", ¢ € C(J,R"), ] :== [0, T},

T = k*h, k* € N:= {0,1,2,...}, r(T,0) denotes the finite number of impulsive points

which belong to (0, T) and @ € C!([—h,0],R"). The symbols z(x;") = 11151+ z(x; +€) and
e—

z(x;) = elir(r)l_ z(x; + €) represent the right and left limits of z(x) at x = x;, respectively.

In a conference held at Wisconsin University in 1940, Ulam [27] first raised the question
of the stability of functional equations. The first answer to the question of Ulam [28] was
given by Hyers in 1941 in the case of Banach spaces. In recent years, many researchers
have been interested in the UHs and UHR of IFDEs and FDDEs. In [29], the authors
introduced the concept of piecewise continuous solutions for impulsive Cauchy problems
and discussed UHs for IFDEs. In [30], the authors gave existence and uniqueness of
solutions as well as UH results for IFDEs. In [31], the authors established the existence,
uniqueness, UHs and UHRs of solutions for FDEs. In [32], the authors introduced four
Ulam type stability concepts for non-instantaneous IFDEs with state dependent delay and
obtained sufficient conditions for Ulam type stability. However, there are few studies on
UHs and UHRs of IFDDE, which is complex.

Therefore, we attempt to investigate the existence, uniqueness, UHs and UHRs of the
nonlinear IFDDEs in this paper:

(“Df-2) (x) = Az(x = h) +g(x,2(x)), x # x;, x €],
2(xf) =z(x)+ G, x = x;, i =1,2,...,7(T,0), @)
z(x) =w(x), —h<x<0.

Compared with [21-23], the novelties of this paper are as follows:

In this paper, the explicit solution of the Caputo fractional time delay impulse differen-
tial equation is given. A different from the system studied in [23], the fractional derivative
is Caputo type and adds the impulsive condition to the system in this paper. In view of this
difference, the impulsive delayed Mittag-Leffler type vector function newly constructed is
important to solving the problem.

Although the ideas and methods adopted in the study of existence and UHs of solu-
tions are similar to [21-23], the considered system is different, here, we not only give the
representation of solutions via the new constructed impulsive delayed Mittag—Leffler type
vector function but also study the existence and uniqueness of solutions, UHs and UHRs
of (2).

The structure of this paper is as follows. Firstly, we seek for the fundamental solution
vector for the linear homogeneous IFDDEs and give its exact solution. Secondly, we derive
the exact representation of solution of (1) by using the delayed Mittag—Leffler type matrix
functions and impulsive delayed Mittag—Leffler type vector function. Furthermore, we
prove the existence and uniqueness of solutions of (2). Finally, we establish the conditions
for the existence of the UHs and UHRs for the nonlinear IFDDEs.

2. Preliminaries
Set PC(J,R") :== {z : ] - R" : z € C((x,xi41|,R"),i = 1,2,...,7(T,0); there
C(

i
exist z(x;") and z(x;), z(x;") = z(x;)} with ||z|[pc = sup ||z(x)]]; ,R”) is the space
xej]



Fractal Fract. 2022, 6, 742

30f16

of all the continuous functions from | to R" with ||z|c = ma]x |z(x)|| and CI(J,R") =
xe
{z € C(],R”) z/ € C(J,R")}. Letz € R" and A € R™"; we introduce vector norm

Izll = T |z;| and matrix norm |A|| = max z |a;;|. Denote ||@|c = max ||w( )| and
i=1 1<j<n 4 x€[—h,0

@'||c = max ||@
|@lc = max /()]
Definition 1 (see [2]). Let « € (0,1) and g : [0, +00) — R™. The Caputo fractional derivative of
g can be written as

(“D4.8)x) = g [, (1= (it x >0

Definition 2 (see [2]). Let « € (0,1) and g : [0, +00) — R". The Riemann—Liouville fractional
integral of g can be written as

(5-8)(0) = 75 |, (=" g0t x>0

Definition 3 (see [21]). Delayed one-parameter Mittag—Leffler type matrix function Efl"a ‘R —
R™ " is defined by
®O, —co<x<—h,
E, —h<x<0,
]EAx”‘ _ v x—h 2
E ATt +A21("(20c+)1)
(Gj—Dh<x<jh jeN,

(x = (=D ©)
+...+A7W

where © is a zero matrix and E is an identity matrix.

Definition 4 (see [21]). The delayed two-parameter Mittag—Leffler type matrix function Ef; :
R — R™" s defined by

@, —o<x < _h/
a—1
g0 <y,
I'(a)
" h 4 x)oc 1 20471 (x _ h)?)lel
EAx —_ E( A 2 — 4
b M) TATarp) T Tt p) @
(x = (j = D)
+...+ A - p
I'(ja+B)
(j—1)h<x<jh jeN.

Definition 5. Let x € ((j —1)h,jh], j=1,2,...,k*; the impulsive delayed Mittag—Leffler type
vector function Zy ,(-) : R — R" is defined by

thx Z ]EB(X xj—h)* Ci. (5)
O<xl<x
Remark 1. Let x € (jh, (j+1)h], x; =jh,j=1,2,...,k* — 1, the impulsive delayed Mittag—

Leffler type vector function Zy ,(-) : R — R" is defined by
i a
Zna(x) = ) E;:X(x—(k—i—l)h) C,
k=1

Lemma 1 (see [21]). Let x € ((j —1)h, jh];j € N, one can obtain (C]I))"O‘+E,‘f'“)(x) = AE;?(x*h)a.
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Lemma 2 (see [21]). Let x € [(j — 1)k, jh; j € N; one can obtain ||Ef*" || < Eo(|| Al[x*), where

k

Ey(+) is defined by Eo(z) = kzo m
Lemma 3 (see [22]). Let x € ((j —1)h,jh]; j € N; 0 < t < x; we have

HAH’” 1

— (m — 1)),

A(x—h—
R tH_E

j-1
Lemmad4. Letx € ((j—1)h,jh],jeN,x;e U (x—(j+1—r)h,x— (j—r)h]; we have
r=2

/‘x T
it
= (x—x; = (j = )W) B[(j - r)a, 1 — a],

where B[l, m] = 01 =11 — s)m—14s.

Proof. By calculation, one can obtain

Joion (=)0 (= xi = (j = r)n) U dt

(x = xi — (j = r)l) U= =D [ gl=r=Da1(1 — g)=adg
(x = xi = (j =) U "VB[(j — r)a, 1~ a].

O
Lemma 5. Let x € ((j —1)h, jh], j € Nand x; € (0, x); we obtain
B < Ea(lAl (= x0)).

Proof. Let x € ((j —1)h, jh] and x; € (0,x — (j — 1)h]; one can obtain

i—1
Ax—x;—h)* ! (x—x;—mh)"™
1B, | = X |a" xrfmazl)
m—O
< Z HAII’”

< Ea(I\AII(x— X) )

Letx € ((j—1h,jhland x; € (x — (j+1—r)h,x—(j—7r)h],r =2,3...j—1; one

can obtain '
Alx—x;—h)* 1T (x—x;—mh)™®
|, | < T A" S
m70
< E HA”ml“(ma—l-l

< E,X(HAll(x—x) )-
Letx € ((j —1)h, jh] and x; € (x — h, x); one can obtain

[EACS = 0 < Eo(| Al (x — x,)").
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3. The General Solution of Homogeneous System

In this part, we discuss the exact solution of

(“Dfi2)(x) = Az(x —h), x # x;, x €],
z(x) =z(x] )+ C;, x =x;, i =1,2,...7(T,0), (6)
z(x) =a@(x), —h<x <0,

by using (3)-(5).
Lemma 6. Let x € ((j —1)h,jh]; j € Nand x; € (0, x) is arbitrarily fixed impulsive points; we
e g (BT ) (x) = AR
Proof. Let x; € (x — h, x]; we have
B e — ECy. )

By Definition 1 and (7), one can obtain

-*Xl‘*hu —
‘g, (B () = gy Jo (G (= 0)
= ARV,

Foranyx; € (x— (j+1—7r)h,x—(j—r)hjandr =2,3,...,j — 1, we have

j-r me
A(X7xi7]’l)a L m (x — X — mh) .
E C = m;OA oty G ®)

By Definition 1 and (8), one can obtain
(D3, B ) (x)
gy Al —x—h)E
= i Jo =@ e

+2h . .
= F(llfrx) fxf:h( ) A%Cdt-'-

_ ma—1
B L e

= A forh(xft)_"‘Ai(t T

T(1-a) | Jxi (vc+1)
—n 20 (t—x;—
x r (=r)a(t—xi—(j=r)h)U="* 1
ot o Gor(x—1)7 a pj—r = (JE] r])a:—)l) C,dt

— AEC + A2GmI oy ajer e () T

) T(a+1) I((j—r—1)a+1)
j—r—

_ (x—h—x;—mh)"™

= A mE() B” F(mzx+T) i

A(x—x;—2h)"
— AR,
For any fixed x; € (0,x — (j — 1)h], one can obtain

Yt (X — x; — mh)™®

Alx—xj=h)* ~ _ ]
E; CG=Y A CTESY C.. )
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By Definition 1 and (9), one can obtain

(€D, ELCT T ) (x)

X t—x;
— i | il = AN

2(t—x;
+ L =) ”‘AZ%C dt

ja—1
et [T — AT G C,-dt}

T(ja+1)
_ 2 (x—x;—2h)" 1 (x=x;—(j—1h)0-2=
= AEC + A G+ AT S

. x—h—x;—mh)™*
= A Z Am T'(ma+1) Ci

G

= AJE;‘(" e,

O

Lemma 7. Impulsive delayed Mittag-Leffler type vector function Zy ,(-) is the fundamental
solution of (6).

Proof. By Definition 1 and Lemma 6, we have

13 (77(1 )u X — 1 X 4\~ t Xi— ) /.
0 —
CIDu( r E cz)<x> s fix—t © Ny car

0<x;<x 0<x;<x
. C A(t—x;—h)*
= ( )y D3+Eh l Ci (x)
0<x;<x

— A ¥ ]E;(x_xi_Zh)aCi.

0<xj<x

Forany x; € (0,x) andi =1,2,...,7(x,0), we verify that Z;, , (x") = Z, , (x;") + C;.

i A(x;"—x—h)"
Zno(xf) = L E e
. Alx —xi—h)™
Z;{:ll Eh ("= —h) Ce+ G, xl.+ € (xl-, xi+1],
_ i A(x: —x—h)% _
Zh,oc(xi ) = 22:111}3 b =) Cr, X, € (xiflzxi}/

which implies that Zj, , (x;") = Zj 4 (x; ) + C;. O

Theorem 1. The solution z € PC([—h, T],R") of (6) has the following form:

2(x) = +/E”S> @' (s)ds+ Y EATIC

0<x;<x

Proof. The argument is similar to that in ([21] Theorem 3.2).
We find the exact solution of (6) that satisfies z(x) = @(x), —h < x <0, in the form

N 0 _h—g\&
z2(x) = B c 4 /hE;f(" By (s)ds + Zya(x), —h<x <T.

where ¢ is an unknown constant vector, y(-) € C'([0, +c0), R") is an unknown function.

Note that o
EAY ¢ 4 / . E,‘?(x*h*s)ay(s)ds =w(x), —h<x<0.
Let x = —h; we have
M BT e, —h<s<0, BN —Es= -
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Thus, we obtain ¢ = @(—h) and
0 «
@(x) = @(—h) + / hEZ\(x_h_s) y(s)ds, —h <x <0.

For —h < x < 0, when —h < s < x, one can obtain —h < x —h —s < x and when
x<s<0,onecanobtainx —h <x—h—s < —h.Let —h < x <0, we obtain

o(x) = @(-h)+ [5ELCT y(s)ds
= @(=h)+ [%,y(s)ds

Thus, one can obtain y(x) = @'(x).
Letx € [0, T] and x; € (0, x]; we have

+\a . T x,—h)¥
2) = B o(—n) + 0, B @'(s)ds + i, B, g,
]Ef(xf)aa)(—h) n fi)h EhA(x,-fh*S)“w%S)ds =+ Z;(;ll E;(Xi*Xk*h)an n Cl»’
= z(x;) +Gi.

xj'—h—s)"‘

Theorem 2. The particular solutionz(x) € PC([—h, T],R") of (1) withZ(x) =0= (0,0,...,0) ",
—h < x < 0 can be written as

/IE’“’” (t)dt.

Proof. The proof is analogous to the one in ([22] Theorem 3.1), so we omit the details. [J

Combining with Theorems 1 and 2, any expression of the exact solution of (1) is
obtained.

Theorem 3. The exact solution z € PC([—h, T],R") of (1) with z(x) = @(x); —h < x < 0 can
be written as

2(x) = EMo(-h)+ [0 BT 0l (s)ds+ ¢ EACTE

0<x;<x
+ JFRMTD o (p)at.

According to the Theorems 2 and 3, the function z(-) is called a solution of (2) if z(x)
satisfies the following form:

2(x) = EMo(—h)+ [0 BT 0l (s)ds+ ¢ BACTET

_ 0<x;<x (]0)
+ [YE; C=h= o 4, 2(4))dt

4. Existence and Uniqueness of the Solution

In this part, we establish the existence and uniqueness results of (2). Let

o(x) = ¥ LS (= (m— 1)y, v e (G- 1)h ),

m=1 T(ma)

M = [0 @(s)|lds < +o.

We assume that the following conditions:

[Hi] There exists an L > 0 such that ||g(x,z)|| < L||z|| + N satisfies in the case of
geC(JxR",R"),x € ],z € R".

[Hy] Let p = LT®(T) < 1.
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Theorem 4. If [Hy| and [Hy) are satisfied, then (2) has at least one solution z € PC([—h, T|, R").
Proof. According to Theorem 3 and (10), the operator A on 9B, can be written as
(Az)(x) = Efo(-h)+ [O BT ol s)as+ £ BTG
0<x;<x (]1)
+ TR o (1, 2(8))at.

where B, := {z € PC([~h, T],R"), ||z||pc <randr > 5 }andK = E,(||A|| T*)(||(—h)|]
M)+ L E(AIT = x)*)Cill + S(T)NT.

<xp<x

Flrstly, we show that A(B,) C B,. For any z € B,, we have

« A(x—h—s)" A(x—x;—h)"
I(AZ) ()| < (B [[l@(=h)| + [°, |IBF") lle'@)lds+ £ A1y
xX;i<Xx

A h—
GG L
Eo([|Ax%) [@(=h)| + E([[A]x*) [°, (5 s
X —h—t)*
+ 2 ElAlG =G+ o IEAC D% (L 2] pe + N)at

< Eu([|[A[IT*)([|@(=h)[| + M) + @(T)NT + LT(T)r
+ Y E([[AI(T = x))[G
0<xj<x
< k+pr<r,

IN

which implies that A(%B,) C B,.

Secondly, we check that continuity of A. Let {z,(-)};>_; be a Cauchy sequence such
that z, () — z(-)(n — 00) in B,, gu(-) = g(-,zu(+)) and g(-) = g(+,z(-)). Forany x € ], we
have

T NERS T gt za (1)) — (8, 2(1)) |t
(T)lIgn — gllpc,

1(Azn)(x) = (Az)(x)

ININA

this yields that || (Az,) — (Az)||pc < TO(T)||gn — &llpc-
Finally, we show that A is equicontinuous. Forany z € B, and 0 < x < x+ Ax < T,
we obtain

l(Az)(x+ Ax) = (A2) @) < (B2 —EA) |[o(=h)|

+thUE (e Axhs)_ gAbeh ||||w’<s>||ds
+ ¥ EpEAEh g Al o)
O<x,<x

Ax—h—
+ R A=) —Ehi P Nlgs,z(s))lds

+A (x+Ax—h—
+ [ XHEMX g (s, 2(5)) | ds
< J14+To+T34+ T4+ Ts,

where .
~ x+ x x
no= I, - }g/*pnng(( ,3”
+
3 = fhnﬂz . "A 1 hEh)" S(nuw(s)nds
< @ ||Cf7h||IEhAx+ xhas _Eh e ||ds,
3 o= p |EpUTArEht _gAma e
0<xl<x
~ Ax—h— A h—
3= [y EprA —Eh,ﬁj‘ Y Nlg(s,2(s)) | ds

A _ o\
(Llzllp + N) [ [EAGHATH=)" _ ghA—h=s g
I o= [ITONESTAY hesf Illg(s,2(s))||ds.

IN
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Let —h < x<x+ Ax < Tas Ax — 0; we have

]EA(x+Ax)"‘ N E}/l\xa’,
]E;Zl(x-&-Ax—h—s)“ N IE:A(x—h—s)"‘,

3 E?(X—G-Ax—x,-—h @ 5oy E;:l(x—xi—h)"‘l
0<x;<x 0<x;<x
]E;:llix+Ax7h7t)“ _)E;iixfhft)"‘,

This yields that 3y — 0, J — 0,33 — 0, 34 — 0 as Ax — 0. For Js5, one can obtain

yAN A Ax—h—s)%
(Lllzllpe + N) [ B 23 g

X

ELCHAE" (L2 pe + N) Ax = 0 as Ax — 0.

Js5

IN

Therefore, one can obtain || (Az)(x + Ax) — (Az)(x)|| — 0as Ax — 0. O

[H3] There exists an L > 0 that ||g(x,z) — g(x,2)|| < L||z — Z|| satisfies in the case of
z,z € R". N

[Hy Let p = LT®(T) < 1.

Theorem 5. If [H3] and [Hy)| are satisfied, then (2) has a unique solution z € PC(]J,R").

Proof. It is easy to prove that A : B3 — B3 defined in (11) is uniformly bounded by

using the Theorem 4. Now, we check that A is a Banach operator. For any z,z €

By, where B; := {z € PC([-h,T|,R"),[|z]|pc < Fwith7 > 55}, & = ([lo(=h)| +

ME(AIT) + L E(lAIT = x)")ICil + S(T)T]g]| and [I8]] = supye; llg(x, 0)]]
Xi<Xx

For any x € [—h, T], one can obtain

SNBSS gt 2(0) — g(4,2(1)) |dt
L[ IR () — Z(8) |t

Lliz —2pc fy IE,S """ |dt
LT®(T)|z - Z||pc,

1(Az)(x) = (AZ) (%)

VAN VAR VAN VAN

which implies that || Az — AzZ||pc < p|lz —Z|lpc. O

5. Ulam Type Stability Results of (2)

In this part, we establish the Ulam type stability results of nonlinear IFDDEs. Let
e ¢ >0,]:=[-h0]UJand yp € C(J,RT := (0, +00)). Consider (2) and the following
inequalities:
I°DG ¥ (x) — A¥ (x —h) — g(x,¥(x))| <& x €],
[¥(x") —¥(x;) =G|l < ¢, i=1,2,...,7(T,0), (12)
¥(x) = @(x), x € [-h,0],
and
DG ¥ (x) — A¥ (x = ) — g(x, ¥ (x))[| < ep(x), x €]
¥ (x) = ¥(x7) = Cill <eg, i =1,2,...,7(T,0), (13)
¥(x) = @(x), x € [-h,0].

Definition 6. System (2) is said to be Ulam—Hyers stable if there exists K > 0 such that for every
e > 0 and for any solution ¥ € PC(], R") satisfying (12), there exists a solution z € PC(J,R") of
(2) such that N

[¥(x) —z(x)| < K(e+¢), x€].
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Remark 2. If ¥ € PC(J,R") is a solution of inequality (12), then there exist D; € R" and
Z € C(J,R") such that

@) ||Z2(x)]| <e|Di]| <¢p, xe],i=1,2,...,r(T,0).

(b)  (CDE.Y)(x) = A¥(x —h) +g(x,¥(x)) + Z(x), x € ].

© Y(x)=%(x7)+C+D;i=12,...,r(T0).

(d) Y(x)=w(x), x € [—h,0].

Definition 7. System (2) is said to be Ulam—Hyers—Rassias stable with respect to (-) and ¢ if
there exists K > 0 such that for every ¢ > 0 and for every solution ¥ € PC(], R") of inequality (13),
there exists a solution z € PC(J,R") of (2) such that

1¥(x) = 2(x)|| < eK(p(x) +¢), x €.

Remark 3. The function ¥ € PC(J,R") is said to be a solution of inequality (13) if there exist
E; € R"and Z € PC(]J,R") such that

(@ | Z(x)] <epx), ||El <ep, x€],i=12,...,¢(T,0).

(b) (DY) (x) = A¥(x —h) +g(x, ¥ (x)) + Z(x), x € ].

© Y(x)=%(x;)+C+E,i=12,...,r(T0).

(d) Y(x)=w(x), x € [—h,0].

Lemma 8. If ¥ € PC(],R") is a solution of inequality (12), then ¥ satisfies the following integral
inequality

¥~ B () - OB @ - T BN

0<x;<x
R gy, ‘P<t>>dtH
< o T EIANT -5+ TO(T)e

0<x;<x
Proof. By Remark 2, one can obtain

(DG ¥) (x) = A¥ (x —h) + g(x, ¥ (x)) + Z(x),x €],
Y(x")=Y(x;)+C+D;i=12,...,r(T,0),
Y(x) =@(x), x € [-h,0],

and
¥(x) = Efo(-h)+ (OB o (s)ds+ ¢ BRI+ Dy)
0<xj<x
h—
+ BT (g (D) + Z(1)at
Let x € J; we obtain

¥~ B () - OB @t - B BN

0<x;<x
h—
—fO (%= tg(t‘I’(t))dtH

= L ||IE D 4 BRI 2 (1) e
< Z an(IIAH(x—xl) )|Dill +@(T) [y edt
< 4> Z Ex(|AI(T — x;)%) +e®@(T)T.

0<x;<x
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Lemma 9. If¥ € PC(J,R") is a solution of inequality (13), then ¥ satisfies the following integral
inequality

<x;<x
— JFRT T g 4, ‘I’(t))dt‘

< & Y Ea(I\AH( —x1)%) +e®(T) [y ¢

0<x;<x

Proof. By Remark 3, one can obtain

(“D§F) (x) = A¥(x —h) +g(x, ¥ (%)) + Z(x),x € ],
¥ (x; ) = Y(x;)+Ci+E,i=12,...,r(T,0),
‘Y(X)ICD(X), [ h,O],
and
¥(x) = Efo(—h)+ [O BNV o (s)ds+ ¢ B (C 4+ Fy)
0<x;<x
+ BT (g (1) + Z(1))at
Let x € J; we obtain
H (x) — EA" f E (e=h=s)* o @' (s)ds— ¥ ]E}z:l(x—xi—h)“ci
0<x;<x
-Jo Ezf,ix*hft)“g(t ¥ (1)) dtH
< r R E 4 ES T 2 ()t
0<x;<x
< T Ea(llAll(xfxz))HE | +@(x) f¢ IIZ (|dt
<x;i<x
< ¢ Y EJ||AI(T —x)*) +ed(T fo
0<x;<x

O
Theorem 6. Suppose that [H3] and [Hy) are satisfied. Then (2) is UH on ],
Proof. Letz € PC(J,R"); we have

z(x) = IEA"“(D —h) +ff’ E;?(x_h_s)aco’(s)ds—i- Y E;‘(x_xi_h)aci

0<x;<x

+JF BN g (1, 2(1)) .
Let x € [—h,0]; we have

[¥(x) —z(x)]| = lo(x) —@(x)[| = 0 < K(e + ).
According to Lemma 8, for any x € |, one can obtain

¥ (x) — )||
< H‘I’x —EAo(=h) — [O BT ol(s)ds - p BACT G

0<xi<x

— JrEAC- ”“g(t»lf(t))dtH+JOX||EM" 09 (6) — gt (1)) e
< ¢ T Ea(JAI(T—x)*) + eTe(T) + LTR(T)|¥ ~2]rc,
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which implies that

¢ Y Ex(JAI(T—x;)%)
0<x;<T

¥ —2()| < S R
< K(e+9¢),
where 1
A (AT - )%), To(T) |
1— LTCD(T) { 0<§<T
O

[Hs] For any t € ], there is a monotone function ¢(-) € C(J,R") such that
x _
|t < My(x).
0

Theorem 7. Suppose that [Hs|-|Hs| are satisfied. Then (2) is UHR on J.
Proof. Let x € [—h,0]; one can obtain
¥ (x) = 2(x)]| = llo(x) — @(x)|| = 0 < eK(¢ + (x)).
According to Lemma 9, for any x € |, one can obtain

[ (x) —Z(x)ll
< H\If(x EAx f_ Ax— his)a(@’(s)ds— r E A(x—x;— )Ci

0<xi<x

—HMSh“mxumeH&;thvw» o(t,2(6)) |t

< €¢0<§< Ea([[A(T — x)*) +eM®(T)g(x) + LTO(T) ¥ — z pc,

which implies that

e Y Eu(||AI(T—x)")
0<x;<T

¥ 2] < ]+ )
< eK(p+9(x),
where .
IZ:~max{ Eo(|A|[(T — x;)*), M®(T )}
1—-LT®(T) 0<xZ<T
O
6. Examples

In this part, we illustrate the obtained results with a couple of examples.

Example 1. Let « = 0.3, h = 04,k* =5,r(T,00 =4, T =2,x; = 04iandi = 1,2,3,4.

Consider
(“Dfi2)(x) = Az(x — 0.4) + g(x), x € [0,2],
z(x) =z(x; )+ C;, x =x;,1=1,2,3,4,
@(x) =2 +1,x22+2)", —04<x<0,
where

0= (20 ) 4= (0503 ) o= (7

ENENNTEN
~~
oq
—~
)
Il
7 N\
=
N
~

(14)

(15)
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By Theorem 1, we have

z(x) = Eéffosco(—o.él —|—f_004E?ix*0-4*5)0‘3w/(s)ds_|_ ¥ EBALE%OA(Z'H))OGCI‘
. . 0<x;<x '
+Jo 0432)304 0 g(t)dt,
where
) 403 0,04
ATy * €00
x03 5 (x —0.4)06
E+ At + 4 e (0.4,0.8]
x0.3 ) ( 0'4)0 .6 3 ( —0. 8)0'9
04 = 0.3 0.6 0.9 12
x 2(x—04) 5 (x—0.8) L(x—12)
E+Aras "4 Tae T4 a9 T4 Tpa o Y€ 216
x0-3 ( 0'4)06 3 (x _ 0.8)0‘9 4(x o 1.2)1.2
FH AT e 4 Tas Y T2
5(x—1.6)1°
AT G (1.6,2]
and
0
( 0 ), x €10,04],
1
( 2 ), x€ (04,08,
1
) (1)+(1)
B+ Al 08N (7)) , x € (08,12
( I(13) 1 1 ( ]
(E+A(x—0.8)0'3 Ay (x—1.2)0'6>< % )
y EAG-04(+1)03 I(13) I'(16) 1
oda<e | +(E+A("_1‘2)Os)<1>+(3) x € (12,16]
I(1.3) 1 3 )
(x —0.8)% 2 (x —1.2)06 3(x —16)% 3
(E+A ) Y T(e) T(19) i
(x—12)%%  (x—16)%6\ [ 1
i (E+A ras) I 1
_ 0. 3
+ (E—l—A(x(ll;)’)))( 3 >+ ( f ) x € (16,2].
' 4

Example 2. Let « = 03, h = 04,k* =3, T = 1.2, ¢(T,0) = 3, x; = 0.1, x, = 0.6 and

x3 = 1.1. Consider

(“Dg+2)(x)
z(x]") = z(x;

1

@(x) =

where A and C; are defined in (15) and g(x,z(x))

(Zx +1,x2 +2) ,

= Az(x —04) +g(x,z(x)), x
)+ C,x=x;,i=1,23,
—04<x<0,

(F521(x),

€[0,1.2],

%Zz(x))T-

(16)
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Let x € [0,1.2] and z,Z € R?; one can obtain

18 (x,2(x)) — g(x, 2(x)) | 12 (121(%) =21 (%) | + [22(x) — 22(x) )

INIA
|~

By calculation, one has ||A|| = 1.3, L = %, L = {5, ®(1.2) = 29819, M = 1.92.
Hence, [Hi], [Hz], [H3] and [Hy] are satisfied. By Theorems 4 and 5, the solution z €
PC([—0.4,1.2], R?) of (16) can be given by

2(x) = EfV0(=04)+ [0 B o eds+ ¢ AT

0<xj<x
0.4—t
+ BN D0 ot 2(8) ),

where

) 0<x<01,

== O O

(
( > 0.1 <x<0.5
(e a i)

(-0

), 0.5 <x <06,

)—i—( } ),0.6<x§1,
2

N

PR TR N 1T

Alxx 04 0
L By T G

0<x<x (x —0.5)%3 ,(x —0.9)06 1
(E+A 1) + A 16 i
(x —1)03 1
(x —0.5)%3 5 (x —0.9)06 1
e I(1.3) A r(1.6) 1
(x—1)03>< 1 > ( 3 )
t{E+4 (2 ) 11<x<12,
r(1.3) 3 3
and
(x—1)~7
E T0.3) ,x €0,04],t €[0,x],
E(xr(ot.)s) +alt ?ﬂ'(éloﬁ)t) €[0.4,0.8],t € [0,x —04],
_ +\—07
E%,x €[0.4,0.8],t € [x — 0.4,x],
EE R Pl R Y Gl Lol RS L
r(0.3) r(0.6) T09)
x €1[0.8,12],t € [0,x—0.8],
— )07 _ 04— )04
E (xr((f)3) +4 (x ?‘fo 6;) €[08,1.2],t € [x—08,x—04],
_ +\—07
E%,x €[0.8,1.2],t € [x — 0.4, x].
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If ¥ € PC([-0.4,1.2],R?) is solution of (12), then there exist Z(x) = (

C([0,1.2], R?) and D; = (1&5, 15) ' such that || Z(x)|| < eand ||D;|| < ¢ = 0.1. Choose

1 " N
e ™ { O<§<TEa(\|A||(T —x;) ),Td)(T)} ~ 96.21.

According to Theorem 6, we obtain
¥ (x) = z(x)[| < K(e +¢).

Then (2) is UH on [—0.4,1.2].
If ¥ € PC([-0.4,1.2],R?) is a solution of (12), then there exist Z(x) = (
C([0,1.2],R?) and E; = (ﬁ,%)—r such that || Z(x)]| < ee* := ep(x), ||Ei|| < ¢ = 0.1.

N
3
=
~
WIm
x
=
S~—
m

Moreover,
X X
/ P(t)dt :/ eldt < e*, x €[0,1.2].
0 0
Choose M = 1 and K = ——— max Y E(JJAI(T = x)%), M®(T) ¢ ~ 96.21.
1-LT®(T) 0<x<T

According to Theorem 7, we obtain

¥ (x) = z(x)|| < eK(@ + 9 (x)),
then (2) is UHR on [—0.4,1.2].

7. Conclusions

In this paper, a new concept of impulsive delayed Mittag—Leffler type vector function
was described, which helps us to construct a representation of an exact solution for Caputo
fractional time delay impulse differential systems. By using the fixed point technique,
fractional calculus, the delayed Mittag—Leffler type matrix functions and the impulsive
delayed Mittag—Leffler type vector function, the existence and Ulam type stability of the
considered systems were investigated. Moreover, we provided two examples to illustrate
the applicability of the results.
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