Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set
Abstract
:1. Introduction
2. Preliminaries
- and belongs the set .
- .
- .
- .
- .
- .
- and .
- 1.
- .
- 2.
- , where denotes the Mittag–Leffler function.
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, J.; Mohyud-Din, S.T. Solving wave and diffusion equations on Cantor sets. Proc. Pak. Acad. Sci. 2015, 52, 81–87. [Google Scholar]
- Yang, X.-J.; Srivastava, H.M.; He, J.-H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696–1700. [Google Scholar] [CrossRef]
- Yang, X.-J.; Srivastava, H.M. An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2015, 29, 499–504. [Google Scholar] [CrossRef]
- Yang, X.-J.; Machado, J.A.T.; Nieto, J.J. A new family of the local fractional PDEs. Fund. Inform. 2017, 151, 63–75. [Google Scholar] [CrossRef]
- Chen, G.-S. Generalizations of Hölder’s and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 2013, 198405. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Sun, W. A Hilbert-type fractal integral inequality and its applications. J. Inequal. Appl. 2017, 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikaya, M.Z.; Tunç, T.; Budak, H. On generalized some integral inequalities for local fractional integrals. Appl. Math. Comput. 2016, 276, 316–323. [Google Scholar] [CrossRef]
- Erden, S.; Sarikaya, M.Z. Generalized Pompeiu type inequalities for local fractional integrals and its applications. Appl. Math. Comput. 2016, 274, 282–291. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
- Iftikhar, S.; Kumam, P.; Erden, S. Newton’s-type integral inequalities via local fractional integrals. Fractals 2020, 28, 2050037. [Google Scholar] [CrossRef]
- Mo, H.X.; Sui, X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractal set Rα (0 < α < 1). Math. Sci. 2017, 11, 241–246. [Google Scholar]
- Akkurt, A.; Sarikaya, M.Z.; Budak, H.; Yildirim, H. Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2017, 3, 797–807. [Google Scholar] [CrossRef]
- Al Quarashi, M.; Rashid, S.; Khalid, A.; Karaca, Y.; Chu, Y.-M. New computations of Ostrowski type inequality pertaining to fractal style with applications. Fractals 2021, 29, 2140026. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
- Khan, Z.A.; Rashid, S.; Ashraf, R.; Baleanu, D.; Chu, Y.-M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv. Differ. Equ. 2020, 657, 657. [Google Scholar] [CrossRef]
- Du, T.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
- Luo, C.; Wang, H.; Du, T. Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
- Meftah, B.; Souahi, A.; Merad, M. Some local fractional Maclaurin type inequalities for generalized convex functions and their applications. Chaos Solitons Fractals 2022, 162, 112504. [Google Scholar] [CrossRef]
- Kilicman, A.; Saleh, W. Notions of generalized s-convex functions on fractal sets. J. Inequal. Appl. 2015, 2015, 312. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Sarikaya, M.Z.; Uygun, N. On new inequalities of Simpson’s type for generalized quasi convex functions. Adv. Inequal. Appl. 2017, 2017, 3. [Google Scholar]
- Franjić, I.; Pečarić, J. On corrected dual Euler–Simpson formulae. Soochow J. Math. 2006, 32, 575–587. [Google Scholar]
- Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Yang, Y.-J.; Baleanu, D.; Yang, X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 2013, 632309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhdari, A.; Saleh, W.; Meftah, B.; Iqbal, A. Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal Fract. 2022, 6, 710. https://doi.org/10.3390/fractalfract6120710
Lakhdari A, Saleh W, Meftah B, Iqbal A. Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal and Fractional. 2022; 6(12):710. https://doi.org/10.3390/fractalfract6120710
Chicago/Turabian StyleLakhdari, Abdelghani, Wedad Saleh, Badreddine Meftah, and Akhlad Iqbal. 2022. "Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set" Fractal and Fractional 6, no. 12: 710. https://doi.org/10.3390/fractalfract6120710
APA StyleLakhdari, A., Saleh, W., Meftah, B., & Iqbal, A. (2022). Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal and Fractional, 6(12), 710. https://doi.org/10.3390/fractalfract6120710