Next Article in Journal
Nonlinear Relation-Theoretic Suzuki-Generalized Ćirić-Type Contractions and Application to Fractal Spaces
Next Article in Special Issue
Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications
Previous Article in Journal
Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
Previous Article in Special Issue
A Stochastic Bayesian Neural Network for the Mosquito Dispersal Mathematical System
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set

1
Department CPST, Higher School of Industrial Technologies, P.O. Box 218, Annaba 23000, Algeria
2
Department of Mathematics, Taibah University, Al-Medina 42353, Saudi Arabia
3
Department of Mathematics, 8 May 1945 University, Guelma 24000, Algeria
4
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(12), 710; https://doi.org/10.3390/fractalfract6120710
Submission received: 6 November 2022 / Revised: 21 November 2022 / Accepted: 24 November 2022 / Published: 29 November 2022
(This article belongs to the Special Issue Fractional Integral Inequalities and Applications)

Abstract

:
The present paper provides several corrected dual-Simpson-type inequalities for functions whose local fractional derivatives are generalized convex. To that end, we derive a new local fractional integral identity as an auxiliary result. Using this new identity along with generalized Hölder’s inequality and generalized power mean inequality, we establish some new variants of fractal corrected dual-Simpson-type integral inequalities. Furthermore, some applications for error estimates of quadrature formulas as well as some special means involving arithmetic and p-logarithmic mean are offered to demonstrate the efficacy of our findings.

1. Introduction

Numerous branches of mathematics and related disciplines, including economics, finance, and biology, heavily rely on the notion of convexity, which represents a potent technique for investigating a diverse range of unconnected topics in pure and applied sciences. This concept is strongly related to the development of the theory of inequalities which serves as an essential tool for studying certain properties of differential equation solutions and the error estimates of quadrature formulas.
In recent years, fractal analysis has led to a lot of new research. Gao-Yang-Kang’s innovative and interesting idea of local fractional differentiation and integration has received a lot of attention from researchers. This idea has grown quickly because it can be used in many different ways, not just in mathematics but also in other fields of science. Ref. [1] looked into the local fractional-wave equation that is defined on Cantor sets. In [2], the heat-conduction equation in Cantor sets was given. Ref. [3] gives the perturbation solution for the oscillator with free-damped vibrations. In [4], the elliptic, hyperbolic, and parabolic fractional PDEs were looked at.
Regarding the integral inequalities in the fractal set via different kinds of generalized convexity, we mention: Hölder inequality [5], Hilbert inequality [6], Grüss inequality [7], Pompeiu inequality [8], Simpson’s first formula [9,10], Simpson’s second formula [11], Hermite–Hadamard type inequalities [9,12], Ostrowski’s inequality [13,14,15], trapezium type inequality [12], generalized trapezium inequality [16], Féjer–Simpson inequality [17], Féjer inequalities [18], and Maclaurin type inequalities [19]. For more inequalities for generalized s-convex functions on fractal sets, see [20].
In this paper, we are concerned with three-point Newton-cotes formulas, of which the works listed below are examples.
The most renowned Newton–Cotes inequality involving three points is that of Simpson, which can be stated as follows:
1 6 h a + 4 h a + b 2 + h b 1 b a a b h x d x b a 4 2880 h 4 ,
where h is a four-times continuously differentiable function on a , b , and
h 4 = sup x a , b h 4 x .
The aforementioned inequality is widely applied in the error estimation of Simpson’s quadrature rule. More importantly, it is highly valued and studied by researchers.
In [21], Set et al. provided the following Simpson-type inequality for generalized quasi convex functions
Theorem 1.
Let I R be an interval, h : I R R α ( I is the interior of I) such that h D α ( I ) and h α C α a , b for a , b I with a < b . If h α is a generalized quasi-convex function, then we have the inequality
1 6 α h a + 4 α h a + b 2 + h b Γ α + 1 b a α . a I b α h x b a α 5 18 α Γ 1 + α Γ 1 + 2 α sup h α a , h α b .
Moreover, Sarikaya et al. [10] presented the following Simpson-type inequality for generalized convex functions.
Theorem 2.
Let I R be an interval, h : I R R α ( I is the interior of I) such that h D α ( I ) and h α C α a , b for a , b I with a < b . If h α is a generalized convex function, then we have
1 6 α h a + 4 α h a + b 2 + h b Γ α + 1 b a α . a I b α h x b a α 12 α Γ 1 + α Γ 1 + 2 α + Γ 1 + 2 α Γ 1 + 3 α h α a + h α b .
More importantly, Abdeljawad et al. [9] generalized the result obtained in [10] involving the generalized ( s , m ) -convexity
Theorem 3.
For s , m ( 0 , 1 ] , let h : I R α be a differentiable function on I such that h α C α a , m b for a , b I with a < b . If h α is generalized ( s , m ) -convex on I, then we have
1 6 α h a + 4 α h a + m b 2 + h m b Γ α + 1 m b a α . a I m b α h x m b a α 2 α 5 s + 2 α 3 s + 1 α 5 α 6 s + 1 α + 3 s + 1 α 6 s + 2 α × Γ 1 + s α Γ 1 + s + 1 α + Γ 1 + s + 1 α Γ 1 + s + 2 α h α a + m h α b .
Furthermore, Du et al. [17] presented the following Simpson-like type inequality via generalized m-convexity
Theorem 4.
Let h : I R α be local fractional continuous such that h α C α a , b with 0 a < m b . If the mapping | h α | q for q 1 is generalized m-convex on [ 0 , b ] along with certain fixed m ( 0 , 1 ] , then the local fractional integral inequality stated below holds.
1 8 α h a + 6 h a + m b 2 + h m b Γ α + 1 m b a α . a I m b α h x m b a 4 α 5 8 α Γ 1 + α Γ 1 + 2 α 1 1 q × 5 64 α Γ 1 + 2 α Γ 1 + 3 α + 23 64 α Γ 1 + α Γ 1 + 2 α h α a q + m α 5 64 α Γ 1 + 2 α Γ 1 + 3 α + 17 64 α Γ 1 + α Γ 1 + 2 α h α b q 1 q + 31 64 α Γ 1 + 2 α Γ 1 + 3 α + 7 64 α Γ 1 + α Γ 1 + 2 α h α a q + m α 31 64 α Γ 1 + 2 α Γ 1 + 3 α + 47 64 α Γ 1 + α Γ 1 + 2 α h α b q 1 q .
Otherwise, in [22], the authors gave the so-called corrected dual-Simpson formula as follows
b a h x d x = S h + R h ,
where
S h = ( b a ) 15 8 h 3 a + b 4 h a + b 2 + 8 h a + 3 b 4
and R h denotes the associated approximation error.
Motivated by the above cited papers, in this work, we will discuss the corrected dual Simpson’s formula given in [22] via local fractional integrals. To do so, we first establish a new integral identity. On the basis of this equality, we derive some corrected dual-Simpson-type inequalities for functions whose local fractional derivatives are generalized convex. In conclusion, some applications are provided.

2. Preliminaries

In this section, we recall some fractal theory concepts. For 0 < α 1 , we have the following α -type sets:
The α -type set of integer is defined as:
Z α : = 0 α , ± 1 α , ± 2 α , , ± n α , .
The definition of the α -type set of rational numbers is:
Q α : = a α = b c α : b , c Z and c 0 .
The α -type irrational number set is defined as:
J α : = a α b c α : b , c Z and c 0 .
The α -type set of the real line numbers is defined as:
R α : = Q α J α .
If the real line number set R α includes u α , v α , and w α , then we have
  • u α + v α and u α v α belongs the set R α .
  • u α + v α = v α + u α = u + v α = v + u α .
  • u α + v α + w α = u + v α + w α .
  • u α v α = v α u α = u v α = v u α .
  • u α v α w α = u α v α w α .
  • u α v α + w α = u α v α + u α w α .
  • u α + 0 α = 0 α + u α = u α and u α 1 α = 1 α u α = u α .
Gao-Yang-Kang [23,24] introduced the idea of the local fractional derivative and local fractional integral.
Definition 1
([23]). A non-differentiable function h : R R α is local fractional continuous at x 0 , if
ϵ > 0 , δ > 0 : h x h x 0 < ϵ α
holds for | x x 0 | < δ , where ϵ , δ R .
C α ( a , b ) denotes the set of all locally fractional continuous functions on ( a , b ) .
Definition 2
([23]). At x = x 0 , the local fractional derivative of h ( x ) of order α is defined as follows:
h α x 0 = d α h x d x α x = x 0 = lim x x 0 Δ α h x h x 0 x x 0 α ,
where Δ α h x h x 0 Γ α + 1 h x h x 0 .
If h ( k + 1 ) α ( x ) = D α D α D α ( k + 1 ) times h ( x ) exists for any x I R , then we say that h D ( k + 1 ) α ( I ) , where k = 0 , 1 , 2 , 3 ,
Definition 3
([23]). Consider h ( x ) C α [ a , b ] . The local fractional integral is therefore defined as
a I b α h x = 1 Γ α + 1 b a h x d x α = 1 Γ α + 1 lim Δ x 0 j = 0 N 1 h x j Δ x j α
with Δ x j = x j + 1 x j and Δ x = max Δ x 1 , Δ x 2 , , Δ x N 1 , where x j , x j + 1 , j = 0 , 1 , , N 1 and a = x 0 < x 1 < < x N = b is a partition of interval a , b .
Here, it follows that a I b α h x = 0 if a = b and a I b α h x = b I a α h x if a < b . If for any x [ a , b ] , there exists a I b α h x , then we denoted by h x I x α a , b .
Lemma 1
([23]). Local fractional integration is anti-differentiation: Assume h x = k α x C α a , b , so we have
a I b α h x = k b k a .
Local fractional integration by parts: Assuming h , k D α a , b and h α x , k α x C α a , b , we obtain
a I b α h x k α x = h x k x a b . a I b α h α x k x .
Lemma 2
([23]). For h ( x ) = x k α , we have for all , k R
d α h ( x ) d x α = Γ 1 + k α Γ 1 + k 1 α x k 1 α , 1 Γ 1 + α b a h ( x ) d x α = Γ 1 + k α Γ 1 + k + 1 α b k + 1 α a k + 1 α .
Lemma 3
(Generalized Hölder’s inequality [5]). Let h , k C α [ a , b ] , p , q > 1 with 1 p + 1 q = 1 , then
1 Γ 1 + α b a h x k x d x α 1 Γ 1 + α b a h x p d x α 1 p 1 Γ 1 + α b a k x q d x α 1 q .
Definition 4
(Generalized convex function [23]). Let h : I R R α . For any x 1 , x 2 I and λ [ 0 , 1 ] , if
h λ x 1 + 1 λ x 2 λ α h x 1 + 1 λ α h x 2
holds, then h is a generalized convex function on I.
The following are two simple examples of generalized convex functions:
1.
h x = x α p , x 0 , p > 1 .
2.
h x = E α x α , x R where E α x α = k = 0 x α k Γ 1 + k α denotes the Mittag–Leffler function.

3. Main Results

In order to prove our results, we need the following lemma
Lemma 4.
Let h : I R α be a differentiable function on I , a , b I with a < b , and h α C α a , b , then the following equality holds
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x = b a α 16 α 1 Γ α + 1 1 0 x α h α 1 x a + x 3 a + b 4 d x α + 1 Γ α + 1 1 0 x 17 15 α h α 1 x 3 a + b 4 + x a + b 2 d x α + 1 Γ α + 1 1 0 x + 2 15 α h α 1 x a + b 2 + x a + 3 b 4 d x α + 1 Γ α + 1 1 0 x 1 α h α 1 x a + 3 b 4 + x b d x α .
Proof. 
Let
I 1 = 1 Γ α + 1 1 0 x α h α 1 x a + x 3 a + b 4 d x α , I 2 = 1 Γ α + 1 1 0 x 17 15 α h α 1 x 3 a + b 4 + x a + b 2 d x α , I 3 = 1 Γ α + 1 1 0 x + 2 15 α h α 1 x a + b 2 + x a + 3 b 4 d x α
and
I 4 = 1 Γ α + 1 1 0 x 1 α h α 1 x a + 3 b 4 + x b d x α .
Using the local fractional integration by parts, we obtain
I 1 = 4 α b a α x α h 1 x a + x 3 a + b 4 x = 0 x = 1 4 α Γ α + 1 b a α 1 0 h 1 x a + x 3 a + b 4 d x α = 4 α b a α h 3 a + b 4 4 α Γ α + 1 b a α 1 0 h 1 x a + x 3 a + b 4 d x α = 4 α b a α h 3 a + b 4 16 α Γ α + 1 b a 2 α Γ α + 1 3 a + b 4 a h u d u α .
Similarly, we obtain
I 2 = 4 α b a α x 17 15 α h 1 x 3 a + b 4 + x a + b 2 x = 0 x = 1 4 α Γ α + 1 b a α 1 0 h 1 x 3 a + b 4 + x a + b 2 d x α = 8 α 15 α b a α h a + b 2 68 α 15 α b a α h 3 a + b 4 4 α Γ α + 1 b a α 1 0 h 1 x 3 a + b 4 + x a + b 2 d x α = 8 α 15 α b a α h a + b 2 + 68 α 15 α b a α h 3 a + b 4 16 α Γ α + 1 b a 2 α Γ α + 1 a + b 2 3 a + b 4 h u d u α ,
I 3 = 4 α b a α x + 2 15 α h 1 x a + b 2 + x a + 3 b 4 x = 0 x = 1 4 α Γ α + 1 b a α 1 0 h 1 x a + b 2 + x a + 3 b 4 d x α
= 68 α 15 α b a α h a + 3 b 4 8 α 15 α b a α h a + b 2 4 α Γ α + 1 b a α 1 0 h 1 x a + b 2 + x a + 3 b 4 d x α = 68 α 15 α b a α h a + 3 b 4 8 α 15 α b a α h a + b 2 16 α Γ α + 1 b a 2 α Γ α + 1 a + 3 b 4 a + b 2 h u d u α
and
I 4 = 4 α b a α x 1 h 1 x a + 3 b 4 + x b x = 0 x = 1 4 α Γ α + 1 b a α 1 0 h 1 x a + 3 b 4 + x b d x α = 4 α b a α h a + 3 b 4 4 α Γ α + 1 b a α 1 0 h 1 x a + 3 b 4 + x b d x α = 4 α b a α h a + 3 b 4 16 α Γ α + 1 b a 2 α Γ α + 1 b a + 3 b 4 h u d u α .
Summing (1)–(4), and then multiplying the resulting equality by b a 16 α , we obtain the desired result. □
Theorem 5.
Let h : a , b R α be a differentiable function on a , b such that h D α a , b and h α C α a , b with 0 a < b . If h α is generalized convex on a , b , then we have
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + h α b + 2 15 α Γ 1 + α Γ 1 + 2 α + 2 α Γ 1 + 2 α Γ 1 + 3 α h α 3 a + b 4 + h α a + 3 b 4 + 34 15 α Γ 1 + α Γ 1 + 2 α 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + b 2 .
Proof. 
From Lemma 4, the properties of the modulus, and the generalized convexity of h α , we have
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α 1 Γ α + 1 1 0 x α h α 1 x a + x 3 a + b 4 d x α
+ 1 Γ α + 1 1 0 x 17 15 α h α 1 x 3 a + b 4 + x a + b 2 d x α + 1 Γ α + 1 1 0 x + 2 15 α h α 1 x a + b 2 + x a + 3 b 4 d x α + 1 Γ α + 1 1 0 x 1 α h α 1 x a + 3 b 4 + x b d x α b a α 16 α 1 Γ α + 1 1 0 x α 1 x α h α a + x α h α 3 a + b 4 d x α + 1 Γ α + 1 1 0 17 15 x α 1 x α h α 3 a + b 4 + x α h α a + b 2 d x α + 1 Γ α + 1 1 0 x + 2 15 α 1 x α h α a + b 2 + x α h α a + 3 b 4 d x α + 1 Γ α + 1 1 0 1 x α 1 x α h α a + 3 b 4 + x α h α b d x α = b a α 16 α Γ α + 1 h α a 1 0 x α 1 x α d x α + h α 3 a + b 4 1 0 x 2 α d x α + 1 0 17 15 x α 1 x α d x α + h α a + b 2 1 0 17 15 x α x α d x α + 1 0 x + 2 15 α 1 x α d x α + h α a + 3 b 4 1 0 x + 2 15 α x α d x α + 1 0 1 x 2 α d x α + 1 0 1 x α x α h α b d x α .
Using a change of variable and Lemma 2, we easily find
1 Γ α + 1 1 0 x α 1 x α d x α = Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α ,
1 Γ α + 1 1 0 x 2 α d x α = 1 0 1 x 2 α d x α = Γ 1 + 2 α Γ 1 + 3 α ,
1 Γ α + 1 1 0 17 15 x α 1 x α d x α = 1 Γ α + 1 1 0 x + 2 15 α x α d x α = 2 15 α Γ 1 + α Γ 1 + 2 α + Γ 1 + 2 α Γ 1 + 3 α
and
1 Γ α + 1 1 0 17 15 x α x α d x α = 1 Γ α + 1 1 0 x + 2 15 α 1 x α d x α = 17 15 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α .
Using (6)–(9) in (5), we obtain
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + h α b + 2 15 α Γ 1 + α Γ 1 + 2 α + 2 α Γ 1 + 2 α Γ 1 + 3 α h α 3 a + b 4 + h α a + 3 b 4 + 34 15 α Γ 1 + α Γ 1 + 2 α 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + b 2 ,
which is the result. The proof is completed. □
Theorem 6.
Let h : I R α be a differentiable function on I , a , b I with a < b , such that h D α a , b and h α C α a , b . If h α q is a generalized convex on a , b , where q > 1 with 1 p + 1 q = 1 , then we have
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α Γ 1 + α Γ 1 + 2 α 1 q Γ 1 + p α Γ 1 + p + 1 α 1 p h α a q + h α 3 a + b 4 q 1 q + 17 p + 1 2 p + 1 15 p + 1 α 1 p h α 3 a + b 4 q + h α a + b 2 q 1 q + 17 p + 1 2 p + 1 15 p + 1 α 1 p h α a + b 2 q + h α a + 3 b 4 q 1 q + h α a + 3 b 4 q + h α b q 1 q .
Proof. 
From Lemma 4, the properties of modulus, generalized Hölder’s inequality and generalized convexity of h α q , we have
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α 1 Γ α + 1 1 0 x p α d x α 1 p 1 Γ α + 1 1 0 h α 1 x a + x 3 a + b 4 q d x α 1 q + 1 Γ α + 1 1 0 17 15 x p α d x α 1 p
× 1 Γ α + 1 1 0 h α 1 x 3 a + b 4 + x a + b 2 q d x α 1 q + 1 Γ α + 1 1 0 x + 2 15 p α d x α 1 p × 1 Γ α + 1 1 0 h α 1 x a + b 2 + x a + 3 b 4 q d x α 1 q + 1 Γ α + 1 1 0 1 x p α d x α 1 p 1 Γ α + 1 1 0 h α 1 x a + 3 b 4 + x b q d x α 1 q b a α 16 α 1 Γ α + 1 1 0 x p α d x α 1 p × 1 Γ α + 1 1 0 1 x α h α a q + x α h α 3 a + b 4 q d x α 1 q + 1 Γ α + 1 1 0 17 15 x p α d x α 1 p × 1 Γ α + 1 1 0 1 x α h α 3 a + b 4 q + x α h α a + b 2 q d x α 1 q + 1 Γ α + 1 1 0 x + 2 15 p α d x α 1 p × 1 Γ α + 1 1 0 1 x α h α a + b 2 q + x α h α a + 3 b 4 q d x α 1 q + 1 Γ α + 1 1 0 1 x p α d x α 1 p × 1 Γ α + 1 1 0 1 x α h α a + 3 b 4 q + x α h α b q d x α 1 q .
Using a change of variable, we have
1 Γ α + 1 1 0 x p α d x α = 1 Γ α + 1 1 0 1 x p α d x α
and
1 Γ α + 1 1 0 17 15 x p α d x α = 1 Γ α + 1 1 0 2 15 + x p α d x α .
Using Lemma 2, we obtain
1 Γ α + 1 1 0 x p α d x α = Γ 1 + p α Γ 1 + p + 1 α ,
1 Γ α + 1 1 0 1 x α d x α = 1 Γ α + 1 1 0 x α d x α = Γ 1 + α Γ 1 + 2 α
and
1 Γ α + 1 1 0 17 15 x p α d x α = 1 Γ α + 1 17 15 2 15 x p α d x α = Γ 1 + p α Γ 1 + p + 1 α 17 15 p + 1 α 2 15 p + 1 α = Γ 1 + p α Γ 1 + p + 1 α 17 p + 1 2 p + 1 15 p + 1 α .
Substituting (11)–(15) in (10), we obtain
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α Γ 1 + α Γ 1 + 2 α 1 q Γ 1 + p α Γ 1 + p + 1 α 1 p h α a q + h α 3 a + b 4 q 1 q + 17 p + 1 2 p + 1 15 p + 1 α 1 p h α 3 a + b 4 q + h α a + b 2 q 1 q + 17 p + 1 2 p + 1 15 p + 1 α 1 p h α a + b 2 q + h α a + 3 b 4 q 1 q + h α a + 3 b 4 q + h α b q 1 q ,
which is the result. The proof is completed. □
Theorem 7.
Let h : I R α be a differentiable function on I , a , b I with a < b , such that h D α a , b and h α C α a , b . If h α q is a generalized convex on a , b , where q > 1 , then we have
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α Γ 1 + α Γ 1 + 2 α 1 1 q × Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a q + Γ 1 + 2 α Γ 1 + 3 α h α 3 a + b 4 q 1 q + Γ 1 + α Γ 1 + 2 α 17 15 2 α 2 15 2 α 1 1 q
× 2 15 α Γ 1 + α Γ 1 + 2 α + Γ 1 + 2 α Γ 1 + 3 α h α 3 a + b 4 q + 17 15 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + b 2 q 1 q + Γ 1 + α Γ 1 + 2 α 17 15 2 α 2 15 2 α 1 1 q × 17 15 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + b 2 q + 2 15 α Γ 1 + α Γ 1 + 2 α + Γ 1 + 2 α Γ 1 + 3 α h α a + 3 b 4 q 1 q + Γ 1 + α Γ 1 + 2 α 1 1 q × Γ 1 + 2 α Γ 1 + 3 α h α a + 3 b 4 q + Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α b q 1 q .
Proof. 
From Lemma 4, the properties of the modulus, generalized power mean inequality, and generalized convexity of h α q , we have
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α 1 Γ α + 1 1 0 x α d x α 1 1 q × 1 Γ α + 1 1 0 x α h α 1 x a + x 3 a + b 4 q d x α 1 q + 1 Γ α + 1 1 0 17 15 x α d x α 1 1 q × 1 Γ α + 1 1 0 17 15 x α h α 1 x 3 a + b 4 + x a + b 2 q d x α 1 q + 1 Γ α + 1 1 0 x + 2 15 α d x α 1 1 q × 1 Γ α + 1 1 0 x + 2 15 α h α 1 x a + b 2 + x a + 3 b 4 q d x α 1 q + 1 Γ α + 1 1 0 1 x α d x α 1 1 q × 1 Γ α + 1 1 0 1 x α h α 1 x a + 3 b 4 + x b q d x α 1 q b a α 16 α 1 Γ α + 1 1 0 x α d x α 1 1 q
× 1 Γ α + 1 1 0 x α 1 x α h α a q + x α h α 3 a + b 4 q d x α 1 q + 1 Γ α + 1 1 0 17 15 x α d x α 1 1 q × 1 Γ α + 1 1 0 17 15 x α 1 x α h α 3 a + b 4 q + x α h α a + b 2 q d x α 1 q + 1 Γ α + 1 1 0 x + 2 15 α d x α 1 1 q × 1 Γ α + 1 1 0 x + 2 15 α 1 x α h α a + b 2 q + x α h α a + 3 b 4 q d x α 1 q + 1 Γ α + 1 1 0 1 x α d x α 1 1 q × 1 Γ α + 1 1 0 1 x α 1 x α h α a + 3 b 4 q + x α h α b q d x α 1 q .
Using a change of variable and Lemma 2, we have
1 Γ α + 1 1 0 x α d x α = 1 Γ α + 1 1 0 1 x α d x α = Γ 1 + α Γ 1 + 2 α
and
1 Γ α + 1 1 0 17 15 x α d x α = 1 Γ α + 1 1 0 2 15 + x α d x α = Γ 1 + α Γ 1 + 2 α 17 15 2 α 2 15 2 α .
Substituting (6)–(9), (17), and (18) in (16), we obtain
1 15 α 8 α h 3 a + b 4 h a + b 2 + 8 α h a + 3 b 4 Γ α + 1 b a α . a I b α h x b a α 16 α Γ 1 + α Γ 1 + 2 α 1 1 q × Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a q + Γ 1 + 2 α Γ 1 + 3 α h α 3 a + b 4 q 1 q + Γ 1 + α Γ 1 + 2 α 17 15 2 α 2 15 2 α 1 1 q × 2 15 α Γ 1 + α Γ 1 + 2 α + Γ 1 + 2 α Γ 1 + 3 α h α 3 a + b 4 q
+ 17 15 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + b 2 q 1 q + Γ 1 + α Γ 1 + 2 α 17 15 2 α 2 15 2 α 1 1 q × 17 15 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α a + b 2 q + 2 15 α Γ 1 + α Γ 1 + 2 α + Γ 1 + 2 α Γ 1 + 3 α h α a + 3 b 4 q d t α 1 q + Γ 1 + α Γ 1 + 2 α 1 1 q × Γ 1 + 2 α Γ 1 + 3 α h α a + 3 b 4 q + Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α b q 1 q ,
which is the result. The proof is completed. □

4. Applications

Corrected dual-Simpson quadrature formula
Let Υ be the partition of the points a = x 0 < x 1 < < x n = b of the interval a , b , and consider the quadrature formula
1 Γ α + 1 b a h x d x α = λ h , Υ + R h , Υ ,
where
λ h , Υ = 1 Γ α + 1 i = 0 n 1 x i + 1 x i α 15 α 8 α h 3 x i + x i + 1 4 h x i + x i + 1 2 + 8 α h x i + 3 x i + 1 4
and R h , Υ denotes the associated approximation error.
Proposition 1.
Let n N and h : a , b R α be a differentiable function on a , b with 0 a < b and h α C α a , b . If h α is generalized convex function, we have
R h , Υ 1 Γ 1 + α i = 0 n 1 x i + 1 x i 2 α 16 α × Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α x i + h α x i + 1 + 2 15 α Γ 1 + α Γ 1 + 2 α + 2 α Γ 1 + 2 α Γ 1 + 3 α × h α 3 x i + x i + 1 4 + h α x i + 3 x i + 1 4 + 34 15 α Γ 1 + α Γ 1 + 2 α 2 α Γ 1 + 2 α Γ 1 + 3 α h α x i + x i + 1 2 .
Proof. 
Applying Theorem 5 on the subintervals x i , x i + 1 i = 0 , 1 , , n 1 of the partition Υ , we obtain
1 15 α 8 α h 3 x i + x i + 1 4 h x i + x i + 1 2 + 8 α h x i + 3 x i + 1 4 Γ α + 1 x i + 1 x i α . x i I x i + 1 α h x x i + 1 x i α 16 α Γ 1 + α Γ 1 + 2 α Γ 1 + 2 α Γ 1 + 3 α h α x i + h α x i + 1 + 2 15 α Γ 1 + α Γ 1 + 2 α + 2 α Γ 1 + 2 α Γ 1 + 3 α × h α 3 x i + x i + 1 4 + h α x i + 3 x i + 1 4 + 34 15 α Γ 1 + α Γ 1 + 2 α 2 α Γ 1 + 2 α Γ 1 + 3 α h α x i + x i + 1 2 .
Multiplying both sides of the above inequality by 1 Γ 1 + α x i + 1 x i α , and then summing the obtained inequalities for all i = 0 , 1 , , n 1 and using the triangular inequality, we obtain the desired result. □
Application to special means
For arbitrary real numbers a , b we have:
The generalized arithmetic mean: A a , b = a α + b α 2 α .
The generalized p-Logarithmic mean:
L p a , b = Γ 1 + p α Γ 1 + p + 1 α b p + 1 α a p + 1 α b a α 1 p , a , b R , a b and p Z 1 , 0 .
Proposition 2.
Let a , b R with 0 < a < b , and n 2 , then we have
16 α A 3 a + b 4 n , a + 3 b 4 n A n a , b 15 α Γ α + 1 L n n a , b 15 α b a α 16 α Γ 1 + α Γ 1 + 2 α 1 q Γ 1 + p α Γ 1 + p + 1 α 1 p Γ 1 + n α Γ 1 + n 1 α 1 q × a n 1 α q + 3 a + b 4 n 1 α q 1 q + 17 p + 1 2 p + 1 15 p + 1 α 1 p 3 a + b 4 n 1 α q + a + b 2 n 1 α q 1 q + 17 p + 1 2 p + 1 15 p + 1 α 1 p a + b 2 n 1 α q + a + 3 b 4 n 1 α q 1 q + a + 3 b 4 n 1 α q + b n 1 α q 1 q .
Proof. 
The assertion follows from Theorem 6, applied to the function f x = x n α where f : 0 , + R α . □

5. Conclusions

In this paper, some inequalities of the corrected Simpson-type integral for generalized convex functions are derived from a new generalized identity.
Our findings were shown to be effective when applied to the error estimates of the quadrature formula and to special means.
The results can lead to additional research in this fascinating field and generalizations in other types of calculations, including multiplicative calculus and quantum calculus.

Author Contributions

Conceptualization, A.L., W.S. and B.M.; methodology, A.L., W.S. and A.I.; validation, B.M. and A.I.; formal analysis, A.I.; investigation, W.S. and A.I.; writing—original draft preparation, A.L. and B.M.; writing—review and editing, A.L., W.S. and A.I.; visualization, W.S. and A.I.; supervision, B.M.; project administration, A.L. and W.S. All authors have read and agreed to the published version of the manuscript.

Funding

The authors declared that no funding was received for this article.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The work of the first author was supported by the MESRS of Algeria (PRFU project N° A14N01EP230220230001).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ahmad, J.; Mohyud-Din, S.T. Solving wave and diffusion equations on Cantor sets. Proc. Pak. Acad. Sci. 2015, 52, 81–87. [Google Scholar]
  2. Yang, X.-J.; Srivastava, H.M.; He, J.-H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696–1700. [Google Scholar] [CrossRef]
  3. Yang, X.-J.; Srivastava, H.M. An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2015, 29, 499–504. [Google Scholar] [CrossRef]
  4. Yang, X.-J.; Machado, J.A.T.; Nieto, J.J. A new family of the local fractional PDEs. Fund. Inform. 2017, 151, 63–75. [Google Scholar] [CrossRef]
  5. Chen, G.-S. Generalizations of Hölder’s and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 2013, 198405. [Google Scholar] [CrossRef] [Green Version]
  6. Liu, Q.; Sun, W. A Hilbert-type fractal integral inequality and its applications. J. Inequal. Appl. 2017, 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. Sarikaya, M.Z.; Tunç, T.; Budak, H. On generalized some integral inequalities for local fractional integrals. Appl. Math. Comput. 2016, 276, 316–323. [Google Scholar] [CrossRef]
  8. Erden, S.; Sarikaya, M.Z. Generalized Pompeiu type inequalities for local fractional integrals and its applications. Appl. Math. Comput. 2016, 274, 282–291. [Google Scholar] [CrossRef]
  9. Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
  10. Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
  11. Iftikhar, S.; Kumam, P.; Erden, S. Newton’s-type integral inequalities via local fractional integrals. Fractals 2020, 28, 2050037. [Google Scholar] [CrossRef]
  12. Mo, H.X.; Sui, X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractal set Rα (0 < α < 1). Math. Sci. 2017, 11, 241–246. [Google Scholar]
  13. Akkurt, A.; Sarikaya, M.Z.; Budak, H.; Yildirim, H. Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2017, 3, 797–807. [Google Scholar] [CrossRef]
  14. Al Quarashi, M.; Rashid, S.; Khalid, A.; Karaca, Y.; Chu, Y.-M. New computations of Ostrowski type inequality pertaining to fractal style with applications. Fractals 2021, 29, 2140026. [Google Scholar] [CrossRef]
  15. Sarikaya, M.Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
  16. Khan, Z.A.; Rashid, S.; Ashraf, R.; Baleanu, D.; Chu, Y.-M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv. Differ. Equ. 2020, 657, 657. [Google Scholar] [CrossRef]
  17. Du, T.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
  18. Luo, C.; Wang, H.; Du, T. Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
  19. Meftah, B.; Souahi, A.; Merad, M. Some local fractional Maclaurin type inequalities for generalized convex functions and their applications. Chaos Solitons Fractals 2022, 162, 112504. [Google Scholar] [CrossRef]
  20. Kilicman, A.; Saleh, W. Notions of generalized s-convex functions on fractal sets. J. Inequal. Appl. 2015, 2015, 312. [Google Scholar] [CrossRef] [Green Version]
  21. Set, E.; Sarikaya, M.Z.; Uygun, N. On new inequalities of Simpson’s type for generalized quasi convex functions. Adv. Inequal. Appl. 2017, 2017, 3. [Google Scholar]
  22. Franjić, I.; Pečarić, J. On corrected dual Euler–Simpson formulae. Soochow J. Math. 2006, 32, 575–587. [Google Scholar]
  23. Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
  24. Yang, Y.-J.; Baleanu, D.; Yang, X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 2013, 632309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lakhdari, A.; Saleh, W.; Meftah, B.; Iqbal, A. Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal Fract. 2022, 6, 710. https://doi.org/10.3390/fractalfract6120710

AMA Style

Lakhdari A, Saleh W, Meftah B, Iqbal A. Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal and Fractional. 2022; 6(12):710. https://doi.org/10.3390/fractalfract6120710

Chicago/Turabian Style

Lakhdari, Abdelghani, Wedad Saleh, Badreddine Meftah, and Akhlad Iqbal. 2022. "Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set" Fractal and Fractional 6, no. 12: 710. https://doi.org/10.3390/fractalfract6120710

APA Style

Lakhdari, A., Saleh, W., Meftah, B., & Iqbal, A. (2022). Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal and Fractional, 6(12), 710. https://doi.org/10.3390/fractalfract6120710

Article Metrics

Back to TopTop