A Study on the Approximate Controllability of Hilfer Fractional Evolution Systems
Abstract
:1. Introduction and Main Results
2. Preliminaries
3. Proof of the Main Results
4. An Example
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eidelman, S.D.; Kochubei, A.N. Cauchy problem for fractional diffusion equations. J. Differ. Equ. 2004, 199, 211–255. [Google Scholar] [CrossRef] [Green Version]
- Yang, H. Approximate controllability of Sobolev type fractional evolution equations of order α∈(1,2) via resolvent operators. J. Appl. Anal. Comput. 2021, 11, 2981–3000. [Google Scholar]
- Furati, K.M.; Kassim, M.D.; Tatar, N. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.B.; Trujillo, J.J. Existence of mild solutions for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Phusics; World Scientific: Singapore, 2000. [Google Scholar]
- Belmekki, M.; Benchohra, M. Existence results for fractional order semilinear functional differential equations with nondense domain. Nonlinear Anal. 2010, 72, 925–932. [Google Scholar] [CrossRef]
- Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.; Khan, A. Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020, 2020, 615. [Google Scholar] [CrossRef]
- El-Borai, M.M. Some probability densities and funcdamental solutions of fractional evolution equations. Chaos Solitons Fract. 2002, 14, 433–440. [Google Scholar] [CrossRef]
- Joshi, H.; Jha, B. Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math. Model. Numer. Simul. Appl. 2021, 1, 84–94. [Google Scholar]
- Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces. Fractal Fract. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.B.; Wang, Q.Q. The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2. Comput. Math. Appl. 2012, 64, 2100–2110. [Google Scholar]
- Wang, J.R.; Zhou, Y.; Medved, M. On the solvabilty and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 2012, 152, 31–50. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Shen, X.H. Existence of mild solutions for fractional evolution equations. J. Int. Equ. Appl. 2013, 25, 557–585. [Google Scholar] [CrossRef]
- Hernández, E.; O’Regan, D. Controllability of Volterra-Fredholm type systmes in Banach spaces. J. Frankl. Inst. 2009, 346, 95–101. [Google Scholar] [CrossRef]
- Chang, Y.K.; Pereira, A.; Ponce, R. Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 2017, 20, 963–987. [Google Scholar] [CrossRef]
- Ji, S.C. Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method. Appl. Math. Comput. 2014, 236, 43–53. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ren, Y.; Mahmudov, N.I. On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 2011, 62, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, Q.R. Approximate controllability of Riemann–Liouville fractional differential inclusions. Appl. Math. Comput. 2016, 274, 267–281. [Google Scholar] [CrossRef]
- Zhou, H.X. Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 1983, 21, 551–565. [Google Scholar] [CrossRef]
- Liu, Z.H.; Li, X.W. Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 2015, 53, 1920–1932. [Google Scholar] [CrossRef]
- Liu, Z.H.; Bin, M. Approximate controllability of impulsive Riemann–Liouville fractional equations in Banach spaces. J. Int. Equ. Appl. 2014, 26, 527–551. [Google Scholar] [CrossRef]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematics Sciences; Springer: New York, NY, USA, 1983. [Google Scholar]
- Ye, H.P.; Gao, J.M.; Ding, Y.S. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y. A Study on the Approximate Controllability of Hilfer Fractional Evolution Systems. Fractal Fract. 2022, 6, 695. https://doi.org/10.3390/fractalfract6120695
Liang Y. A Study on the Approximate Controllability of Hilfer Fractional Evolution Systems. Fractal and Fractional. 2022; 6(12):695. https://doi.org/10.3390/fractalfract6120695
Chicago/Turabian StyleLiang, Yue. 2022. "A Study on the Approximate Controllability of Hilfer Fractional Evolution Systems" Fractal and Fractional 6, no. 12: 695. https://doi.org/10.3390/fractalfract6120695
APA StyleLiang, Y. (2022). A Study on the Approximate Controllability of Hilfer Fractional Evolution Systems. Fractal and Fractional, 6(12), 695. https://doi.org/10.3390/fractalfract6120695