Influences of MgO and PVA Fiber on the Abrasion and Cracking Resistance, Pore Structure and Fractal Features of Hydraulic Concrete
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Materials
2.2. Mix Proportion Design
2.3. Test Methods
2.3.1. Mechanical Property of Concrete
2.3.2. Abrasion Resistance Tests
2.3.3. Cracking Resistance
The Restrained Concrete Ring Test
The Temperature Stress Test Machine (TSTM) Test
2.3.4. Pore Structure Test
2.3.5. Fractal Dimension Calculation
3. Results and Discussion
3.1. Mechanical Properties of Hydraulic Concretes
3.2. Abrasion Resistance
3.3. Cracking Resistance of Concrete
3.3.1. The Restrained Concrete Ring Test Results
3.3.2. TSTM Test Results
3.4. MIP Results
3.5. Ds Analysis
3.6. Pore Structural and Fractal Analysis
3.6.1. Pore Structural Analysis of the Relationship between the Compressive Strength, Abrasion Resistance and Pore Structures of Concrete
3.6.2. Fractal Analysis of the Relationship between the Compressive Strength, Abrasion Resistance and Ds of Concrete
4. Conclusions
5. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, W.Z.; Li, Z.Y.; Qiang, M.S.; Lu, Y.M. Risk management of hydropower development in China. Energy 2013, 60, 316–324. [Google Scholar] [CrossRef]
- Geng, W.; Ming, Z.; Lilin, P.; Ximei, L.; Bo, L.; Jinhui, D. China’s new energy development: Status, constraints and reforms. Renew. Sust. Energy Rev. 2016, 53, 885–896. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Liu, Y.-W. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume. Constr. Build. Mater. 2007, 21, 972–977. [Google Scholar] [CrossRef]
- Siddique, R.; Kapoor, K.; Kadri, E.-H.; Bennacer, R. Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete. Constr. Build. Mater. 2012, 29, 270–278. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.H.; Shi, Y.; Tang, S.W.; Chen, E. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Compos. Part B-Eng 2017, 130, 28–37. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Brzozowski, P. Effects of fluidal fly ash on abrasion resistance of underwater repair concrete. Wear 2017, 376–377, 15–21. [Google Scholar] [CrossRef]
- Horszczaruk, E. Abrasion resistance of high-strength concrete in hydraulic structures. Wear 2005, 259, 62–69. [Google Scholar] [CrossRef]
- Rashad, A.M.; Seleem, H.E.-D.H.; Shaheen, A.F. Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. Int. J. Concr. Struct. Mater. 2014, 8, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.H.; Tang, S.W.; Chen, X.R. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test. Constr. Build. Mater. 2016, 127, 804–814. [Google Scholar] [CrossRef]
- Zhang, P.; Kang, L.; Zheng, Y.; Zhang, T.; Zhang, B. Influence of SiO2 /Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, S.Y.; Yang, C.J.; Chen, H.T. Effects of insulation materials on mass concrete with pozzolans. Constr. Build. Mater. 2017, 137, 261–271. [Google Scholar] [CrossRef]
- Isa, M.T.; Ahmed, A.S.; Aderemi, B.O.; Taib, R.M.; Mohammed-Dabo, I.A. Effect of fiber type and combinations on the mechanical, physical and thermal stability properties of polyester hybrid composites. Compos. Part B-Eng. 2013, 52, 217–223. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Wang, T. Influencing factors analysis and optimized prediction model for rheology and flowability of nano-SiO2 and PVA fiber reinforced alkali-activated composites. J. Clean. Prod. 2022, 366, 132988. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, Y.; Hong, N.; Zhao, Z.; Chen, W.; Zhao, J. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere 2021, 268, 131652. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Hu, S.; Wang, J.; Wang, T. High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Compos. Part B-Eng 2022, 244, 110171. [Google Scholar] [CrossRef]
- Huang, K.J.; Shi, X.J.; Dan, Z.; Mirsayar, M.; Wang, A.G.; Mo, L.W. Use of MgO expansion agent to compensate concrete shrinkage in jointed reinforced concrete pavement under high-altitude environmental conditions. Constr. Build. Mater. 2019, 202, 528–536. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.Q.; Li, W.W. Factors analysis on autogenous volume deformation of MgO concrete and early thermal cracking evaluation. Constr. Build. Mater. 2016, 118, 276–285. [Google Scholar] [CrossRef]
- Mo, L.W.; Fang, J.W.; Hou, W.H.; Ji, X.K. Synergetic effects of curing temperature and hydration reactivity of MgO expansive agents on their hydration and expansion behaviours in cement pastes. Constr. Build. Mater. 2019, 207, 206–217. [Google Scholar] [CrossRef]
- Kabir, H.; Hooton, R.D. Evaluating soundness of concrete containing shrinkage-compensating MgO admixtures. Constr. Build. Mater. 2020, 253, 119141. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.Q.; Zhou, S.H.; Li, W.W. Sensitive evaluation on early cracking tendency of concrete with inclusion of light-burnt MgO. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2011, 26, 1018–1022. [Google Scholar] [CrossRef]
- DL/T 5296-2013; Technical Specification of Magnesium Oxide Expansive for Use in Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2013.
- Cao, F.Z.; Yan, P.Y. The influence of the hydration procedure of MgO expansive agent on the expansive behavior of shrinkage-compensating mortar. Constr. Build. Mater. 2019, 202, 162–168. [Google Scholar] [CrossRef]
- Cao, F.Z.; Miao, M.; Yan, P.Y. Effects of reactivity of MgO expansive agent on its performance in cement-based materials and an improvement of the evaluating method of MEA reactivity. Constr. Build. Mater. 2018, 187, 257–266. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Z.Y.; Deng, M. Regulating the expansion characteristics of cementitious materials using blended MgO-type expansive agent. Materials 2019, 12, 976. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.Z.; Yan, P.Y. Effects of reactivity and dosage of magnesium oxide expansive agents on long-term volume variation of concrete. J. Chin. Ceram. Soc. 2018, 46, 1126–1132. [Google Scholar]
- Zheng, J.J.; Wong, H.S.; Buenfeld, N.R. Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model. Cem. Conc. Res. 2009, 39, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Jang, B.S.; Kim, J.H.; Lee, K.M. Durability characteristics of fly ash concrete containing lightly burnt MgO. Constr. Build. Mater. 2014, 58, 77–84. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The fractal geometry of nature. Am. J. Phys. 1988, 51, 468. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y. Application of fractals to evaluate fractures of rock due to mining. Fractal Fract. 2022, 6, 96. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, W.; Zhao, J.; Lv, J.; Song, J.; Cao, X. Influence of groundwater depth on pile–soil mechanical properties and fractal characteristics under cyclic loading. Fractal Fract. 2022, 6, 198. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, S.; Shen, Z.; Zhao, X.M. Influence of geotextile materials on the fractal characteristics of desiccation cracking of soil. Fractal Fract. 2022, 6, 628. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, P.; Qiu, S.; Rao, B.; Yu, B. A generalized thermal conductivity model for unsaturated porous media with fractal geometry. Int. J. Heat Mass Transf. 2020, 152, 119540. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, M.Y.; Pang, X.Y.; Li, L.; Li, K.F. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials. Appl. Surf. Sci. 2013, 282, 302–307. [Google Scholar] [CrossRef]
- Jin, S.S.; Zhang, J.X.; Han, S. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr. Build. Mater. 2017, 135, 1–7. [Google Scholar] [CrossRef]
- DL/T 5330-2015; Code for Mix Design of Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2015.
- Yousefieh, N.; Joshaghani, A.; Hajibandeh, E.; Shekarchi, M. Influence of fibers on drying shrinkage in restrained concrete. Constr. Build. Mater. 2017, 148, 833–845. [Google Scholar] [CrossRef]
- DL/T 5150-2017; Test Code for Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2017.
- ASTM C1138M-2012; Standard Test Method for Abrasion Resistance of Concrete (Underwater Method). ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C1581/C1581M-16; Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage. ASTM International: West Conshohocken, PA, USA, 2016.
- Altoubat, S.; Talha Junaid, M.; Leblouba, M.; Badran, D. Effectiveness of fly ash on the restrained shrinkage cracking resistance of self-compacting concrete. Cem. Conc. Compos. 2017, 79, 9–20. [Google Scholar] [CrossRef]
- Rilem, T.C. Recommendations of RILEM TC 119-TCE: Avoidance of Thermal Cracking in Concrete at Early Ages. Mater. Struct. 1997, 202, 451–464. [Google Scholar]
- Xiao, J.; Long, X.; Li, L.; Jiang, H.; Zhang, Y.; Qu, W. Study on the influence of three factors on mass loss and surface fractal dimension of concrete in sulfuric acid environments. Fractal Fract. 2021, 5, 146. [Google Scholar] [CrossRef]
- Zarnaghi, V.N.; Fouroghi-Asl, A.; Nourani, V.; Ma, H.Y. On the pore structures of lightweight self-compacting concrete containing silica fume. Constr. Build. Mater. 2018, 193, 557–564. [Google Scholar] [CrossRef]
- Xiao, J.; Qu, W.J.; Jiang, H.B.; Li, L.; Huang, J.; Chen, L. Fractal characterization and mechanical behavior of pile-soil interface subjected to sulfuric acid. Fractals 2021, 29, 2140010. [Google Scholar] [CrossRef]
- Jin, S.S.; Zhang, J.X.; Huang, B.S. Fractal analysis of effect of air void on freeze–thaw resistance of concrete. Constr. Build. Mater. 2013, 47, 126–130. [Google Scholar] [CrossRef]
- Yu, P.; Duan, Y.H.; Chen, E.; Tang, S.W.; Wang, X.R. Microstructure-based fractal models for heat and mass transport properties of cement paste. Int. J. Heat Mass Transf. 2018, 126, 432–447. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Mo, L.W.; Fang, J.W.; Huang, B.; Wang, A.G.; Deng, M. Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Constr. Build. Mater. 2019, 229, 116877. [Google Scholar] [CrossRef]
- Mo, L.W.; Liu, M.; Al-Tabbaa, A.; Deng, M. Deformation and mechanical properties of the expansive cements produced by inter-grinding cement clinker and MgOs with various reactivities. Constr. Build. Mater. 2015, 80, 1–8. [Google Scholar] [CrossRef]
- Beshr, S.S.; Mohaimen, I.M.A.; Azline, M.N.N.; Azizi, S.N.; Nabilah, A.B.; Aznieta, A.A. Feasibility assessment on self-healing ability of cementitious composites with MgO. J. Build. Eng. 2021, 34, 101914. [Google Scholar] [CrossRef]
- Gonçalves, T.; Silva, R.V.; Brito, J.D.; Fernández, J.M.; Esquinas, A.R. Hydration of reactive MgO as partial cement replacement and its influence on the macroperformance of cementitious mortars. Adv. Mater. Sci. Eng. 2019, 2019, 9271507. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.S.; Kim, G.Y.; Lee, B.; Hasegawa, R.; Hama, Y. Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforced cementitious composites under freeze thaw cycling. Compos. Part B-Eng. 2016, 90, 241–250. [Google Scholar] [CrossRef]
- Noushini, A.; Samali, B.; Vessalas, K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 2013, 49, 374–383. [Google Scholar] [CrossRef]
- Şahmaran, M.; Özbay, E.; Yücel, H.E.; Lachemi, M.; Li, V.C. Frost resistance and microstructure of engineered cementitious composites: Influence of fly ash and micro polyvinyl alcohol fiber. Cem. Conc. Compos. 2012, 34, 156–165. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.-H.; Ou, J.-P. Abrasion resistance of concrete containing nano-particles for pavement. Wear 2006, 260, 1262–1266. [Google Scholar] [CrossRef]
- Mo, L.W.; Deng, M.; Tang, M.S. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cem. Conc. Res. 2010, 40, 437–446. [Google Scholar] [CrossRef]
- Mo, L.W.; Deng, M.; Wang, A. Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem. Conc. Compos. 2012, 34, 377–383. [Google Scholar] [CrossRef]
- Shen, D.J.; Liu, X.G.; Zeng, X.; Zhao, X.G.; Jiang, G.Q. Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Constr. Build. Mater. 2020, 244, 117874. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice-Hall: Murray Hill, NJ, USA, 2003. [Google Scholar]
- Zeng, Q.; Li, K.F.; Teddy, F.C.; Patrick, D.L. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl. Surf. Sci. 2010, 257, 762–768. [Google Scholar] [CrossRef]
- Chen, X.D.; Wu, S.X.; Zhou, J.K. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 2013, 40, 869–874. [Google Scholar] [CrossRef]
- Kim, J.; Choi, Y.C.; Cheol, S. Fractal characteristics of pore structures in GGBFS-based cement pastes. Appl. Surf. Sci. 2018, 428, 304–314. [Google Scholar] [CrossRef]
Oxide (%) | Cement | Silica Fume | MgO |
---|---|---|---|
Chemicals | |||
CaO | 61.3 | 1.4 | 2.6 |
SiO2 | 19.3 | 94.4 | 1.5 |
Fe2O3 | 4.3 | 1.2 | 0.6 |
Al2O3 | 4.7 | 0.8 | 0.1 |
MgO | 3.7 | 0.6 | 90.6 |
SO3 | 2.6 | - | 0.2 |
Loss on ignition (%) | 1.20 | 0.75 | 3.1 |
Specific gravity | 3.19 | 2.04 | 3.52 |
Blaine specific surface area (m2/kg) | 326 | - | - |
BET specific surface area (m2/g) | 0.89 | 16,500 | 20.40 |
Length (mm) | Diameter (μm) | Density (g/cm3) | Tensile Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|
20 | 30 | 1.30 | 1538 | 36 |
Notation | W/B Ratio | Mix Proportions (kg/m3) | Slump | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Water | Cement | Silica Fume | MgO | Sand | Coarse Aggregate | Fiber | Water- Reducer | |||
CT0 | 0.33 | 123 | 350 | 22 | 0 | 642 | 1428 | 0 | 2.24 | 55 |
CSM4 | 0.33 | 123 | 335 | 22 | 15 | 642 | 1429 | 0 | 2.61 | 53 |
CSM8 | 0.33 | 123 | 320 | 22 | 30 | 642 | 1430 | 0 | 2.98 | 51 |
CSP2 | 0.33 | 123 | 350 | 22 | 0 | 642 | 1428 | 1.2 | 2.98 | 54 |
CSP4 | 0.33 | 123 | 350 | 22 | 0 | 642 | 1428 | 2.4 | 3.35 | 52 |
CSM4P2 | 0.33 | 123 | 335 | 22 | 15 | 642 | 1429 | 1.2 | 3.72 | 52 |
CSM4P4 | 0.33 | 123 | 335 | 22 | 15 | 642 | 1429 | 2.4 | 3.72 | 50 |
Parameter | Physical Meanings |
---|---|
First Zero stress temperature TZ,1 | Under restrained condition, the temperature at which the compressive stress firstly occurs due to the generation of hydration heat |
Maximum compressive stress σc,max | The maximum compressive stress due to cement hydration or concrete expansion under restrained condition. |
Maximum temperature Tmax | The peak temperature of concrete sample due to cement hydration. |
Second Zero stress temperature TZ,2 | The temperature at which the compressive stress reduces to zero and tensile stress begins to develop during the cooling stage. |
Cracking tensile stress σ | The maximum tensile stress corresponding to the occurrence of specimen cracking in the cooling stage. |
Cracking temperature Tc | The temperature corresponding to the sample cracking in the cooling stage. |
Notation | W/B Ratio | Abrasion Resistance of Concrete | |||||
---|---|---|---|---|---|---|---|
f (h·m2/kg) | Enhanced Degrees (%) | ||||||
3-Day | 28-Day | 90-Day | 3-Day | 28-Day | 90-Day | ||
CT0 | 0.33 | 7.7 | 11.9 | 15.6 | 0.0 | 0 | 0 |
CSM4 | 0.33 | 7.3 | 11.1 | 14.8 | −5.7 | −6.8 | −5.4 |
CSM8 | 0.33 | 6.9 | 10.4 | 13.9 | −11.2 | −12.5 | −11.1 |
CSP2 | 0.33 | 8.0 | 12.4 | 16.3 | 3.6 | 3.9 | 4.2 |
CSP4 | 0.33 | 8.2 | 12.7 | 16.8 | 5.8 | 7.1 | 7.5 |
CSM4P2 | 0.33 | 7.5 | 11.6 | 15.3 | −2.5 | −2.8 | −1.9 |
CSM4P4 | 0.33 | 7.8 | 12.1 | 16.0 | 1.0 | 1.3 | 2.5 |
Notation | 1st Zero Stress Temperature TZ,1 (°C) | Maximum Compressive Stress σc,max (MPa) | Maximum Temperature Tmax(°C) | 2nd Zero Stress Temperature TZ,2 (°C) | Tensile Strength σ (MPa) | Cracking Temperature Tc (°C) |
---|---|---|---|---|---|---|
CT0 | 28.1 | 0.26 | 64.8 | 55.7 | 0.89 | 13.8 |
CSM4 | 27.8 | 0.30 | 62.4 | 53.2 | 0.94 | 11.5 |
CSM8 | 27.6 | 0.34 | 60.3 | 51.5 | 0.98 | 9.3 |
CSP2 | 27.8 | 0.26 | 64.1 | 56.1 | 0.96 | 8.5 |
CSP4 | 27.9 | 0.26 | 63.9 | 56.6 | 1.03 | 3.4 |
CSM4P2 | 27.7 | 0.30 | 62.4 | 53.0 | 1.04 | 5.4 |
CSM4P4 | 27.8 | 0.30 | 62.5 | 52.8 | 1.09 | −1.5 |
Notation | Curing Time (Days) | Critical Pore Diameter (nm) | Porosity (%) | Pore Size Distribution | ||
---|---|---|---|---|---|---|
<10 nm (%) | 10–50 nm (%) | 50 nm–10 μm (%) | ||||
CT0 | 3 | 162 | 28.3 | 7.5 | 25.5 | 66.8 |
28 | 70 | 21.5 | 13.4 | 43.5 | 42.8 | |
180 | 41 | 19.1 | 19.5 | 54.1 | 26.2 | |
CSM4 | 3 | 147 | 25.4 | 7.3 | 29.3 | 63.2 |
28 | 60 | 18.6 | 13.0 | 46.1 | 40.5 | |
180 | 33 | 17.2 | 19.1 | 58.3 | 22.2 | |
CSM8 | 3 | 123 | 22.5 | 7.1 | 32.6 | 59.8 |
28 | 49 | 15.7 | 12.7 | 50.2 | 36.6 | |
180 | 26 | 14.3 | 18.7 | 62.8 | 18.2 | |
CSP2 | 3 | 196 | 32.5 | 7.3 | 22.4 | 69.6 |
28 | 93 | 25.3 | 13.1 | 38.9 | 47.6 | |
180 | 65 | 21.5 | 18.6 | 51.3 | 29.7 | |
CSP4 | 3 | 227 | 35.1 | 7.1 | 19.6 | 72.9 |
28 | 116 | 28.6 | 12.7 | 35.8 | 50.8 | |
180 | 86 | 23.6 | 18.3 | 48.1 | 33.1 | |
CSM4P2 | 3 | 165 | 28.6 | 7.3 | 26.2 | 66.1 |
28 | 72 | 21.6 | 13.0 | 42.9 | 43.7 | |
180 | 43 | 18.9 | 18.9 | 55.2 | 25.6 | |
CSM4P4 | 3 | 191 | 30.8 | 7.2 | 23.9 | 68.6 |
28 | 91 | 24.2 | 12.8 | 40.3 | 46.3 | |
180 | 63 | 20.8 | 18.7 | 52.6 | 28.3 |
Notation | Curing Time (days) | Ds | R2 |
---|---|---|---|
CT0 | 3 | 2.687 | 0.956 |
28 | 2.869 | 0.965 | |
180 | 2.931 | 0.989 | |
CSM4 | 3 | 2.725 | 0.968 |
28 | 2.896 | 0.963 | |
180 | 2.946 | 0.976 | |
CSM8 | 3 | 2.776 | 0.958 |
28 | 2.915 | 0.984 | |
180 | 2.979 | 0.963 | |
CSP2 | 3 | 2.613 | 0.949 |
28 | 2.796 | 0.963 | |
180 | 2.896 | 0.982 | |
CSP4 | 3 | 2.576 | 0.976 |
28 | 2.744 | 0.981 | |
180 | 2.843 | 0.963 | |
CSM4P2 | 3 | 2.665 | 0.958 |
28 | 2.816 | 0.967 | |
180 | 2.918 | 0.969 | |
CSM4P4 | 3 | 2.601 | 0.982 |
28 | 2.803 | 0.991 | |
180 | 2.911 | 0.978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zeng, X.; Li, Y.; Yang, H.; Tang, S. Influences of MgO and PVA Fiber on the Abrasion and Cracking Resistance, Pore Structure and Fractal Features of Hydraulic Concrete. Fractal Fract. 2022, 6, 674. https://doi.org/10.3390/fractalfract6110674
Wang L, Zeng X, Li Y, Yang H, Tang S. Influences of MgO and PVA Fiber on the Abrasion and Cracking Resistance, Pore Structure and Fractal Features of Hydraulic Concrete. Fractal and Fractional. 2022; 6(11):674. https://doi.org/10.3390/fractalfract6110674
Chicago/Turabian StyleWang, Lei, Xiaoman Zeng, Yang Li, Huamei Yang, and Shengwen Tang. 2022. "Influences of MgO and PVA Fiber on the Abrasion and Cracking Resistance, Pore Structure and Fractal Features of Hydraulic Concrete" Fractal and Fractional 6, no. 11: 674. https://doi.org/10.3390/fractalfract6110674
APA StyleWang, L., Zeng, X., Li, Y., Yang, H., & Tang, S. (2022). Influences of MgO and PVA Fiber on the Abrasion and Cracking Resistance, Pore Structure and Fractal Features of Hydraulic Concrete. Fractal and Fractional, 6(11), 674. https://doi.org/10.3390/fractalfract6110674