Fractals Flow Simulation for Groundwater Flow with Varying Apertures by Using Analytic Element Method
Abstract
:1. Introduction
1.1. Continuous Models
1.2. Discrete Models
1.3. Analytic Element Method
2. Complex Potential
3. Boundary Conditions
4. Unknown Coefficients
5. Solution Algorithm
6. Results and Discussion
- Reference point:
- Hydraulic head position: m
- Well position:
- Hydraulic conductivity at background: m/day.
6.1. Numerical Solution for a Single Fracture
6.2. Simulation for a Bunch of Fractures
6.2.1. Case-1
6.2.2. Case-2
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Csoma, R. The analytic element method for groundwater flow modelling. Period. Polytech. Civ. Eng. 2001, 45, 43–62. [Google Scholar]
- Available online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/site-permitting-and-compliance/sia/spo/2017-12-31-chh_mw-6_supplemental_review.pdf (accessed on 31 December 2017).
- Berre, I.; Doster, F.; Keilegavlen, E. Flow in fractured porous media: A review of conceptual models and discretization approaches. Transp. Porous Media 2019, 130, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Formaggia, L.; Fumagalli, A.; Scotti, A.; Ruffo, P. A reduced model for Darcy’s problem in networks of fractures. ESAIM Math. Model. Numer. Anal. 2014, 48, 1089–1116. [Google Scholar] [CrossRef]
- Karay, G.; Hajnal, G. Modelling of groundwater flow in fractured rocks. Procedia Environ. Sci. 2015, 25, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Larsson, E. Groundwater Flow through a Natural Fracture. Flow Experiments and Numerical Modelling; Technical Report; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1997. [Google Scholar]
- Hussain, S.M. Simulation of Groundwater Flow by the Analytic Element Method. Doctoral Dissertation, Universidade de São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Marin, I.S.P. Aperfeiçoamento Do Método de Elementos Analíticos Para Simulação de Escoamento Em Rochas Porosas Fraturadas. Doctoral Dissertation, Universidade de São Paulo, São Paulo, Brazil, 2011. [Google Scholar]
- Strack, O.D. Theory and applications of the analytic element method. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef]
- Wendland, E.; Himmelsbach, T. Transport simulation with stochastic aperture for a single fracture–comparison with a laboratory experiment. Adv. Water Resour. 2002, 25, 19–32. [Google Scholar] [CrossRef]
- Neuman, S.P. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 2005, 13, 124–147. [Google Scholar] [CrossRef]
- Haitjema, H.M. Analytic Element Modeling of Groundwater Flow; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Strack, O.D.L. Analytic Modeling of Flow in a Permeable Fissured Medium; Report PLN-4005 UC-70; Battelle Pacific Northwest Laboratory: Richland, WA, USA, 1982. [Google Scholar]
- Cacas, M.C.; Ledoux, E.; de Marsily, G.; Tillie, B.; Barbreau, A.; Durand, E.; Feuga, B.; Peaudecerf, P. Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 1. The flow model. Water Resour. Res. 1990, 26, 479–489. [Google Scholar] [CrossRef]
- Hussain, S.M.; Shah, H.H.; Ro, J.S. Comparison between computational cost of fractals using line-doublets. Math. Comput. Simul. 2022, 202, 374–387. [Google Scholar] [CrossRef]
- Strack, O.D. Groundwater Mechanics; Prentice Hall: Hoboken, NJ, USA, 1989. [Google Scholar]
- Barnes, R.; Janković, I. Two-dimensional flow through large numbers of circular inhomogeneities. J. Hydrol. 1999, 226, 204–210. [Google Scholar] [CrossRef]
- Janković, I.; Barnes, R. High-order line elements in modeling two-dimensional groundwater flow. J. Hydrol. 1999, 226, 211–223. [Google Scholar] [CrossRef]
- Marin, I.S.; Wendland, E.; Strack, O.D. Simulating groundwater flow in fractured porous rock formations using the analytic element method. In Proceedings of the XIX International Conference on Water Resources, Computational Methods in Water Resources, Urbana, IL, USA, 17–22 June 2012; Volume 393, pp. 1–8. [Google Scholar]
- Badv, K.; Deriszadeh, M. Wellhead protection area delineation using the analytic element method. Water Air Soil Pollut. 2005, 161, 39–54. [Google Scholar] [CrossRef]
- Gene, H.G.; Charles, F. Matrix Computations, 3rd ed.; Johns Hopkins Universtiy Press: Baltimore, MD, USA, 1996. [Google Scholar]
Fracture | m/d | Width (m) | Length (m) |
---|---|---|---|
1 | 0.000007 | 5.0 | 300 |
2 | 5000 | 0.5 | 200 |
3 | 2500 | 10.5 | 250 |
Fracture | m/d | Width (m) | Length (m) |
---|---|---|---|
1 | 0.000007 | 5.0 | 150 |
2 | 50,000 | 0.5 | 150 |
3 | 2500 | 10.5 | 200 |
4 | 0.00006 | 20.5 | 200 |
5 | 2600 | 1.02 | 200 |
6 | 200 | 0.003 | 100 |
7 | 80,000 | 25.8 | 100 |
8 | 1300 | 0.7 | 150 |
9 | 0.000001 | 30 | 190 |
10 | 40,000 | 0.9 | 200 |
Fracture | m/d | Width (m) | Length (m) | Fracture | m/d | Width (m) | Length (m) |
---|---|---|---|---|---|---|---|
1 | 1000 | 0.01 | 20 | 26 | 10,000 | 0.6 | 100 |
2 | 5000 | 0.005 | 100 | 27 | 7100 | 0.003 | 100 |
3 | 2500 | 0.5 | 100 | 28 | 0.001 | 0.005 | 200 |
4 | 2000 | 0.1 | 100 | 29 | 5100 | 0.0006 | 100 |
5 | 2600 | 0.02 | 100 | 30 | 0.0006 | 0.9 | 150 |
6 | 200 | 0.003 | 100 | 31 | 8000 | 0.1 | 150 |
7 | 300 | 0.8 | 100 | 32 | 2500 | 0.6 | 150 |
8 | 1300 | 0.7 | 100 | 33 | 250 | 0.8 | 150 |
9 | 9900 | 1 | 100 | 34 | 0.005 | 0.4 | 250 |
10 | 4000 | 0.9 | 100 | 35 | 0.1 | 1 | 100 |
11 | 100 | 0.05 | 100 | 36 | 4500 | 2 | 100 |
12 | 0.7 | 7 | 150 | 37 | 40,000 | 4 | 150 |
13 | 50 | 0.06 | 150 | 38 | 6600 | 0.8 | 100 |
14 | 150 | 0.6 | 100 | 39 | 0.0006 | 0.1 | 80 |
15 | 0.02 | 0.7 | 200 | 40 | 33,300 | 0.01 | 100 |
16 | 200 | 2 | 200 | 41 | 30 | 0.6 | 100 |
17 | 1100 | 0.09 | 100 | 42 | 90 | 0.7 | 100 |
18 | 0.7 | 0.8 | 100 | 43 | 6900 | 0.8 | 110 |
19 | 0.003 | 0.05 | 100 | 44 | 5400 | 0.9 | 90 |
20 | 1000 | 0.7 | 100 | 45 | 0.008 | 0.6 | 120 |
21 | 5500 | 0.03 | 100 | 46 | 1100 | 0.7 | 50 |
22 | 50,000 | 0.05 | 100 | 47 | 0.0006 | 0.8 | 70 |
23 | 60,000 | 0.06 | 100 | 48 | 800 | 0.4 | 50 |
24 | 0.0008 | 0.8 | 100 | 49 | 10 | 0.5 | 100 |
25 | 0.007 | 0.8 | 100 | 50 | 0.0045 | 1 | 60 |
Fracture | b (m) | Length (m) |
---|---|---|
1 | 5.0 | 300 |
2 | 0.5 | 200 |
3 | 10.5 | 250 |
Fracture | b (m) | Length (m) |
---|---|---|
1 | 5.0 | 150 |
2 | 0.5 | 150 |
3 | 10.5 | 200 |
4 | 20.5 | 200 |
5 | 1.02 | 200 |
6 | 0.003 | 100 |
7 | 25.8 | 100 |
8 | 0.7 | 150 |
9 | 30 | 200 |
10 | 0.9 | 200 |
Fracture | Width (m) | Length (m) | Fracture | Width (m) | Length (m) |
---|---|---|---|---|---|
1 | 0.01 | 20 | 26 | 0.6 | 100 |
2 | 0.05 | 100 | 27 | 0.003 | 100 |
3 | 0.5 | 100 | 28 | 0.005 | 200 |
4 | 0.1 | 100 | 29 | 0.0006 | 100 |
5 | 0.02 | 100 | 30 | 0.9 | 150 |
6 | 0.003 | 100 | 31 | 0.1 | 150 |
7 | 0.8 | 100 | 32 | 0.6 | 150 |
8 | 0.7 | 100 | 33 | 0.8 | 150 |
9 | 1 | 100 | 34 | 0.4 | 250 |
10 | 0.9 | 100 | 35 | 1 | 100 |
11 | 0.05 | 100 | 36 | 2 | 100 |
12 | 7 | 150 | 37 | 0.8 | 150 |
13 | 0.06 | 150 | 38 | 0.8 | 100 |
14 | 0.6 | 100 | 39 | 0.1 | 80 |
15 | 0.7 | 200 | 40 | 0.01 | 100 |
16 | 2 | 200 | 41 | 0.6 | 100 |
17 | 0.09 | 100 | 42 | 0.7 | 100 |
18 | 0.8 | 100 | 43 | 0.8 | 110 |
19 | 0.05 | 100 | 44 | 0.9 | 90 |
20 | 0.7 | 100 | 45 | 0.6 | 120 |
21 | 0.03 | 100 | 46 | 0.7 | 50 |
22 | 0.05 | 100 | 47 | 0.8 | 70 |
23 | 0.06 | 100 | 48 | 0.4 | 50 |
24 | 0.8 | 100 | 49 | 0.5 | 100 |
25 | 0.8 | 100 | 50 | 1 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atta, M.; Hussain, S.M.; Hussain, F.; Shah, H.H.; Shah, H.; Ro, J.-S. Fractals Flow Simulation for Groundwater Flow with Varying Apertures by Using Analytic Element Method. Fractal Fract. 2022, 6, 573. https://doi.org/10.3390/fractalfract6100573
Atta M, Hussain SM, Hussain F, Shah HH, Shah H, Ro J-S. Fractals Flow Simulation for Groundwater Flow with Varying Apertures by Using Analytic Element Method. Fractal and Fractional. 2022; 6(10):573. https://doi.org/10.3390/fractalfract6100573
Chicago/Turabian StyleAtta, Maryam, Sardar Muhammad Hussain, Farooq Hussain, Hasrat Hussain Shah, Hassan Shah, and Jong-Suk Ro. 2022. "Fractals Flow Simulation for Groundwater Flow with Varying Apertures by Using Analytic Element Method" Fractal and Fractional 6, no. 10: 573. https://doi.org/10.3390/fractalfract6100573
APA StyleAtta, M., Hussain, S. M., Hussain, F., Shah, H. H., Shah, H., & Ro, J. -S. (2022). Fractals Flow Simulation for Groundwater Flow with Varying Apertures by Using Analytic Element Method. Fractal and Fractional, 6(10), 573. https://doi.org/10.3390/fractalfract6100573