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Abstract: The work presented in this article is composed of 2-dimensional groundwater flow simula-
tions for fractured porous media with different aperture of fractures by using the Analytic Element
Method. In order to investigate the flow behavior and its effect on fractures, we considered different
systems of fractures with varying apertures, hydraulic conductivities and orientations in the presence
of uniform flow field and a well. We also introduced the matrix method to solve the problems for
which the unknown coefficients are obtained from the discharge potential of all the elements present
in the systems. The numerical solution of the prescribed problem is based on a series expansion,
while the influence of each fracture is expressed in a series that satisfy Laplace’s equation.

Keywords: fracture; porous media; matrix method; analytic element method

1. Introduction

Groundwater is one of the most important source of water. In recent decades, several
groundwater models have been developed to study the effects of intervention into the
underground environment [1]. Groundwater is the study of occurrence, movement and
distribution of water with different geological features beneath the earth surface. The flow
direction of groundwater in an aquifer is measured by the static groundwater elevation at
various points throughout the aquifer. It flows from higher static elevations to the lower
ones. The most common methodology to understand the flow behavior on large scale is
drawing contours lines inferred to equipotential hydraulic head, which is used to determine
its flow direction. The contour lines for such methodology are perpendicular to the flow
direction [2].

The problem of fractures is one of the most important and major challenge that
overcome in groundwater flow. Over the last few decades, there has been significant
increase in research into flows in fractured porous media. The presence of fractures
that affect the flow and transport are features of various types of fractures ranging from
millimeters to hundreds of kilometers [3]. In geophysical applications, the presence of
fractures can have significant impact on flow in porous media. Fractures in fractured rocks
have a wide range of scales from small joints to the larger faults. In particular, they can act
as barriers or preferential flow paths due to their varying permeability. The problems of
fractured porous media are complex and experimental data for such kind of problems is
difficult to obtain [4]. The study of fractured porous media is necessary due to numerous
reasons, for example, aquifers that have been fractured are significant resources of fresh
water [5]. In view of recent advances in the context of geologic repository, simulation
of groundwater flow in fractured porous media is a significant subject. Fractures, both
natural and engineered provide major conduits and barriers for the fluid flows in different
types of media. Fractures are classified in various sets each with it’s own geological
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history, direction and features. Various fracture sets consist of more or less interconnected
networks. The hydraulic conductivity of an individual fracture is not the only factor that
influence the flow, some other factors including fracture’s orientation, size, density and
degree of connection also influence the flow in the system [6]. It is mostly observed in
all geologic formations that spreading of groundwater is much faster than the porous
media and act as a contamination vector. A fracture’s geometry is an important aspect
in its formation and the process that occurs in it. It should have an elliptical form with
no flow at the ends according to one of its basic principles. Fractures are typically thin
and saturated with water. The fracture’s walls are symmetrical in relation to the planes
passing through its centers [7,8]. The most prevalent conceptual model is that the fracture
is generated by smooth and flat parallel plates as shown in many studies in various
laboratories, see Refs. [8–10]. In literature, there are two types of flow models for fracture
networks: continuous and discrete.

1.1. Continuous Models

Two or more continuous interacting fractures make up a continuous model. Such
models are used when fractures are well-connected with one another but the porous
medium is overlooked due to its directional dependency as well as influence of different
scales on the features of fractures for transport. In general, in most circumstances its
very difficult to suppose a continuous model for fractured system because of its complex
nature [11].

1.2. Discrete Models

One of the most popular and widely used methodology for fractures is discrete
network modeling, which describe fractured rocks as a population of individual fracture
whose parameters (size, shape, orientation, aperture, and position) are derived from
statistical probability distributions derived from the observations. Such models are used to
describe phenomena as they explicitly include the attributes of each individual fracture.
These models shows each fracture independently explaining it’s geometric features as well
as the relationship between them [7]. Some uni, bi, tri-dimensional elements and parallel
plate models are used in previous works to represent discrete-shaped fractured networks,
for detail see Refs. [7,10–14].

In the literature, several conceptual flow models for fractured porous media have been
proposed. Commonly groundwater simulations are made by employing finite difference,
finite volume as well as finite element methods. Such methods are capable for simulating
fractured flow phenomena but have drawbacks in terms of mesh generation, difficulties
with scale differences, solution approximations and reliance on domain discretization
etc. [7,15]. The required processing time for discrete model of network’s simplification
and its simulation with such methods is large. Due to the given facts, the analytic element
method (AEM) has a significant addition to groundwater modeling approaches and its
computational cost.

1.3. Analytic Element Method

Otto D. L STRACK at University of Minnesota introduced the analytic element method
over 30 years ago to solve the partial differential equations that model groundwater flow
problems [16]. This method is computational, based on superposition principle of analytical
expressions and is applied to both finite and infinite domains, which is commonly used to
solve problems with intern boundaries [9]. It employ analytical elements, which are the
exact solutions to the governing equations for basic aquifer characteristics such as rivers,
wells, impermeable barriers and sinks to approximate solutions of considerably more
complex issues. The governing equations generated by using the AEM are precise, while the
boundary conditions only be approximated [7,12,15–18]. The proposed method is used for
solving the groundwater flow systems that involve the combination of elementary analytic
solutions. The analytical elements which are actually mathematical functions are chosen in
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this method to be represented as specific hydrogeologic features. Each solution represents
hydrogeologic feature with free coefficients on the said function. The free coefficients may
be calculated by specifying the boundary conditions for the elements coordinate points.
This method has gained popularity in recent years due to its applications to harmonically
heterogeneous aquifers among other advances. From the literature, several approaches have
been introduced and solved the problems of groundwater flow to improve the numerical
accuracy and reduce the processing time for the resulting system of equations [19,20].
Besides that, this method has advantage due to the lack of a model grid for a trade-off
between model resolution and area size, as a result, the analytic element method is scale-
insensitive. The prescribed method is much more efficient for solving problems in large
aquifers. It solves regional flow problems by providing a composite analytic solution that
satisfies the governing equations everywhere and guarantees flow continuity.

In this work, we introduced discrete models of fractured porous media by using the
analytic element method as well as the matrix method by using the intern boundary condi-
tions for simulation of groundwater flow. In order to investigate the flow behavior and its
effects, different systems of fractures with varying apertures, orientations and hydraulic
conductivities in the presence of uniform flow field and a well have been considered in
this paper. To solve the system of linear equations deriving from analytical elements, we
apply the concept of AEM and get the desired results for fractured networks with varying
apertures. The remaining work in this paper is organized as follows: Section 2 consists of
complex potential for fractured networks, Section 3 recalls description of boundary con-
ditions with different hydraulic conductivities in comparison with background hydraulic
conductivity, Sections 4 and 5 describe equations of unknown coefficients for solution
algorithm, whereas Sections 6 and 7 composed of results and its detailed description as
well as conclusion part of the desired work.

2. Complex Potential

The complex potential Ω(z) is described as follows:

Ω(z) = Φ(z) + iΨ(z), (1)

where z = x + iy represent the location in complex plane, Φ(z) represent the discharge po-
tential and Ψ(z) represent the related stream function. The complex potential is represented
as the sum of multiple components of the complex potential in the analytic element method
utilizing the superposition principle [16–18]. The discharge potential is the real part of
complex potential, which is denoted by Φ and specified for confined as well as unconfined
aquifers. The discharge potential for confined aquifer using hydraulic conductivity K and
thickness H take the form:

Φ(z) = KHφ− KH2

2
(2)

and for an unconfined aquifer:

Φ(z) =
Kφ2

2
. (3)

Similarly, the uniform flow depict the domain’s streamlining behavior. Its formulation for
global coordinate system with intensity Q forming an angle β with x-axis specified in [7], is
given by:

Ωu f (z) = −Qx0 ze−iβ + C. (4)

The reference point constant C for the said methodology must be computed based on the
hydraulic head at a reference point. Let us consider z = x + iy represent the location in
the complex plane, then the transformation of z to a dimensionless variable Z in local
coordinate system give:

Z = X + iY =
z− 1

2 (z1 − z2)
1
2 (z2 − z1)

, (5)
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where z1 and z2 are the fracture’s initial and final points and the length is L = |z2 − z1|,
as shown in Figure 1.

Zz Yy

YL

z1

X
α

1-1z2 Xx

Figure 1. Transformation of z from global to local coordinates [7,8,15,16].

According to [8,16], the uniform flow in local coordinate system is expressed as:

Ωu f (Z) = −Qx0 Le−i(α−β)

2
+ C, (6)

whereas the complex potential for a single fracture is:

Ω(Z) = A(Z−
√
(Z− 1)(Z + 1)) (7)

and constant A for the above equation is given by:

A =
1
2 K+b∗

K+b∗ + KL
(Qx0 L cos(α− β)), (8)

where α and K+ are the fracture’s angle w.r.t. the x-axis and hydraulic conductivity inside
the fracture, L represent the length of the fracture and b∗ represent the maximum aperture
of the fracture respectively. According to [7,15], the combined form of Equation (6) with
Equation (7) provide the exact solution, which is defined by:

Ωe(Z) = AZ− Qx0 Lei(α−β)Z
2

− A
√
(Z− 1)(Z + 1) + C. (9)

In this work, we considered the complex potential given by Equation (7) as a series and
truncate it’s expansion as a numerical approximation. Hence the complex potential become:

Ω(Z) =
N

∑
n=1

an(Z−
√

Z− 1
√

Z + 1)n. (10)

The real coefficients of the elements and dimensionless variable described in Equation (5)
are represented by an and Z, whereas n represent the series expansion order. In case of
many fractures, one may write the complex potential as:

Ω(Z) =
M

∑
j=1

N

∑
n=1

an(Z−
√

Z− 1
√

Z + 1)n, (11)

where M is used for number of fractures.

3. Boundary Conditions

According to [7,13], the approximate solution for a single fracture in terms of local
cartesian coordinate system is obtained by considering the laminar flow in an elliptical
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fracture for which ‘n’ and ‘s’ are normal and parallel to the fracture’s axis. Let the fracture’s
center is at the origin and it’s width b varies, whereas it’s length is given by L, as shown in
Figure 2.

b
L/2y

L/2

x

n
s

Figure 2. A single fracture [7].

The fracture’s boundary conditions by using cubic law is described in the litera-
ture [7,16] and is given by:

Qs = ψ+ − ψ− =
βb3

K
∂Φ
∂s

, (12)

where b represent the fracture’s aperture, β = ρg
12µ , ρ represent the water density and µ

represent the viscosity. The intern boundary conditions throughout the fracture’s length
after transformation of Equation (12) to the linear law give:

Qs = ψ+ − ψ− =
K+b

K
∂Φ
∂s

, (13)

where the external and internal hydraulic conductivities are represented by K and K+.
Similarly,

b = b∗
√

1− x2 = b∗
√

1−<(Z)2 = b∗ sin θ, (14)

where the fracture’s maximum aperture at center is represented by b∗. The derivative of
the complex potential may provide the discharge vector for an analytical element, which
may take the form:

W(z) = −dΩ(z)
dz

= Qx(z)− iQy(z), (15)

where the discharge vectors in Z-plane are represented by Qx(z) and Qy(z). By using chain
rule, Equation (15) may be written as:

W(z) = − 2
z2 − z1

dΩ(z)
dZ

. (16)

The real part of the derived discharge potential rotated to direction of fracture provide the
fracture’s discharge vector, which may be written as:

Qs =
dΩ(z)

ds
= <(W(z)eiα), (17)

and finally Equation (13) become:

Qs = ψ+ − ψ− =
K+b

K
<(W(z)eiα). (18)
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Now by putting the value of b from Equation (14), Equation (18) become:

Qs =
K+b∗

K
<(W(z)eiα) sin(θ). (19)

4. Unknown Coefficients

The orthogonality of the Fourier series can be used to compute the unknown coeffi-
cients of potential expansion for a single fracture. The discharge vector Qs has the form
of Equation (20) because of discontinuity occurs in the imaginary part of the complex
potential, that is:

Qs =
N

∑
n=0

an(e−inθ − einθ), (20)

which implies

Qs = −2
N

∑
n=0

an
(einθ − e−inθ)

2
(21)

and

Qs = −2
N

∑
n=0

an sin(nθ). (22)

Multiplying both sides by sin(mθ) of Equation (22) and integrating in interval [0, π] provide:

∫ π

0
Qs sin(mθ)dθ = −2

N

∑
n=0

an

∫ π

0
sin(mθ) sin(nθ)dθ, (23)

By using orthogonal property of Fourier series and letting m = n, after simplification
we have: ∫ π

0
Qs sin(nθ)dθ = −πan. (24)

Therefore,

an = − 1
π

∫ π

0
Qs sin(nθ)dθ. (25)

Furthermore, by using value of Qs into Equation (25), we may get:

an = −K+b∗

πK

∫ π

0
<(W(z)eiα) sin(θ) sin(nθ)dθ. (26)

The derived equation need to be used for calculating the unknown coefficients in the
prescribed work.

5. Solution Algorithm

In the literature, it is presented that Barnes and Janković used the iterative method for
solving problems of circular inhomogeneities and high-order line elements [17,18]. Marin
adopted the same procedure for solving problems of fractured inhomogeneities but failed
to converge [8]. Therefore, in our work we introduced the matrix method as a direct solver
instead of iterative one and get the desired results. To calculate the unknown coefficients
for the fractures, Equation (26) may be used in the form of:

ai,n = Pi,n

∫ π

0
<(ΩT(θi)) sin(nθi)dθi, (27)

where

Pi,n = −K+b∗

πK
, (28)
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that determine the n-th unknown coefficient for fracture i, whereas ΩT represent the sum of
all presented elements with its complex potentials including uniform regional flow, defined
by Equation (4).

Equation (27) generate a set of linear equations that is used to be solved the system by
using the matrix method as a direct solver. Now the general form of the coefficients matrix
‘A’ for linear system of equations is [21]:

Ax = b. (29)

The matrix ‘A’ is built by expanding the fractures’ complex potential by using power
series and the known vector ‘b’ of Equation (29) is the integral result of the uniform flow.
Moreover, after substitution and simplification, we may express Equation (27) by:

ai,n

Pi,n
−

M

∑
j 6=i

N

∑
m=1

∫ π

0
<

maj,m(Zj −
√

Zj − 1
√

Zj + 1)m√
Zj − 1

√
Zj + 1

 2eiαi

z2 − z1

 sin(θi) sin(nθi)dθi

=
∫ π

0
<(−Qu f ei(αi−βu f )) sin(θi) sin(nθi)dθi. (30)

6. Results and Discussion

This section intend to analyze the findings and discuss the overall scenario of 2-
dimensional groundwater flow simulations for fractured porous media with varying aper-
ture of fractures, hydraulic conductivities and orientations in the presence of uniform flow
field by using the analytic element method (AEM). In order to analyze the flow behavior
and its effect on fractures, we will begin by introducing some parameters that define the
problem of fractured inhomogeneities in a porous media. The length parameters are spec-
ified in meters (m), while the simulations for all the cases are made by the use of matrix
method as a direct solver with the following data:

• Reference point: z0 = (x, y) = (0, 0)
• Hydraulic head position: φ0 = 100 m
• Well position: zw = (x, y) = (88, 88)
• Hydraulic conductivity at background: K = 1 m/day.

6.1. Numerical Solution for a Single Fracture

We will begin by simulating the impact of a fracture parallel to the uniform flow field.
The uniform flow rate for the said case is assumed to be 0.5 m/day, the aquifer’s back-
ground hydraulic conductivity is 1 m/day, while the hydraulic conductivity of an elliptical
fracture with aperture of 0.5 m is 500 m/day. The numerical solution after simulation for a
single fracture centered at origin, parallel to horizontal direction is illustrated in Figure 3.
The dotted lines represent the hydraulic head contours, whereas the solid lines represent
the streamlines. By comparing the exact solution defined in Equation (9) with the numerical
solution, almost identical results was obtained with maximal relative error 6.9× 10−4.
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Figure 3. Numerical solution for single fracture obtained by the matrix method.

6.2. Simulation for a Bunch of Fractures

In this subsection we are going to divide our results in two cases: Case-1 consists of
fractured inhomogeneities with different hydraulic conductivities, lengths and apertures,
whereas Case-2 consists of fractured inhomogeneities with same hydraulic conductivities
but different lengths and apertures. The following cases are given below:

6.2.1. Case-1

In this test case, different configurations of fractured models subject to the uniform flow
field are presented to examine the flow behavior of the numerical solutions. The simulated
systems consists of different number of fractures with different apertures, lengths and
hydraulic conductivities. For cluster of fractures shown in Figure 4, the impact of three
fractures parallel to each other directed at an angle of 45◦ to the uniform flow have been
observed. Table 1 lists the fracture parameters for the said problem. The resulting flow field
illustrate the expected behavior of the flow in which the high conductivity of the fractures
lead the flow through it’s limited widths and controls the uniform flow field.

Figure 4. 3 fractures with different hydraulic conductivities, apertures and lengths having an angle
of 45◦ in a uniform flow field.



Fractal Fract. 2022, 6, 573 9 of 15

Table 1. Described parameters for Figure 4.

Fracture K+m/d Width (m) Length (m)

1 0.000007 5.0 300
2 5000 0.5 200
3 2500 10.5 250

Figure 5 depicts simulation of 10 fractures randomly placed in a domain with different
hydraulic conductivities, lengths and apertures, given in Table 2. The system include a
regional uniform flow field with 45◦ orientation along horizontal direction. Similarly, in
Figures 6 and 7 we assume the systems consists of 50 fractures each with varying apertures
and hydraulic conductivities in order to make the problem more complex. The lengths,
hydraulic conductivities and widths of the fractures are arbitrary selected for the given
test cases by using parameters in Table 3. The fractures have substantial impact on the
uniform flow for which the generated streamlines are continuous and appropriately depict
the influence of the fractures on expected behavior of the flow.

Figure 5. 10 fractures with different hydraulic conductivities, apertures and lengths having an angle
of 45◦ in a uniform flow field.

Table 2. Hydraulic conductivities, widths and lengths for Figure 5.

Fracture K+m/d Width (m) Length (m)

1 0.000007 5.0 150
2 50,000 0.5 150
3 2500 10.5 200
4 0.00006 20.5 200
5 2600 1.02 200
6 200 0.003 100
7 80,000 25.8 100
8 1300 0.7 150
9 0.000001 30 190
10 40,000 0.9 200
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Figure 6. 50 fractures with different hydraulic conductivities, apertures and lengths having parame-
ters prescribed in Table 3.

Figure 7. 50 fractures having an angle of 45◦ in a uniform flow field with parameters prescribed
Table 3.

Table 3. Parameters defined for Figures 6 and 7.

Fracture K+m/d
Width

(m)
Length

(m) Fracture K+m/d
Width

(m)
Length

(m)

1 1000 0.01 20 26 10,000 0.6 100
2 5000 0.005 100 27 7100 0.003 100
3 2500 0.5 100 28 0.001 0.005 200
4 2000 0.1 100 29 5100 0.0006 100
5 2600 0.02 100 30 0.0006 0.9 150
6 200 0.003 100 31 8000 0.1 150
7 300 0.8 100 32 2500 0.6 150
8 1300 0.7 100 33 250 0.8 150
9 9900 1 100 34 0.005 0.4 250

10 4000 0.9 100 35 0.1 1 100
11 100 0.05 100 36 4500 2 100
12 0.7 7 150 37 40,000 4 150
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Table 3. Cont.

Fracture K+m/d
Width

(m)
Length

(m) Fracture K+m/d
Width

(m)
Length

(m)

13 50 0.06 150 38 6600 0.8 100
14 150 0.6 100 39 0.0006 0.1 80
15 0.02 0.7 200 40 33,300 0.01 100
16 200 2 200 41 30 0.6 100
17 1100 0.09 100 42 90 0.7 100
18 0.7 0.8 100 43 6900 0.8 110
19 0.003 0.05 100 44 5400 0.9 90
20 1000 0.7 100 45 0.008 0.6 120
21 5500 0.03 100 46 1100 0.7 50
22 50,000 0.05 100 47 0.0006 0.8 70
23 60,000 0.06 100 48 800 0.4 50
24 0.0008 0.8 100 49 10 0.5 100
25 0.007 0.8 100 50 0.0045 1 60

Furthermore, we simulate the test cases by letting 50 fractures with same parameters
and orientations as shown in Table 3, and Figures 6 and 7. In one case, we introduced a well
with discharge Qw = 100 m3/day, located at point zw = −150 + 50i, whereas in the second
case we considered the well, as well as the uniform flow field in the domain. The complex
potential for the well as described in [7,18] is:

Ωw =
Qw

2π
ln(z− zw). (31)

The results presented in Figure 8 illustrate that the well draws all of it’s water from
everywhere for which the streamlines depicts the flow direction towards the well, whereas
Figure 9 illustrate that a part of the uniform flow move towards the well while the remaining
is distributed in the domain as per influence of the hydraulic conductivities in the uniform
flow field.

Figure 8. 50 fractures with parameters in Table 3 with a well.



Fractal Fract. 2022, 6, 573 12 of 15

Figure 9. 50 fractures with uniform flow and a well having parameters in Table 3.

6.2.2. Case-2

In this subsection, we assume some examples of fractured inhomogeneities having the
same hydraulic conductivities (equals 1000 m/d) with varying apertures and lengths. First
of all in Figure 10, we consider 3 parallel fractures oriented at an angle 45◦ to the uniform
flow field along horizontal direction with prescribed parameters of Table 4.

Table 4. Parameters given for Figure 10.

Fracture b (m) Length (m)

1 5.0 300
2 0.5 200
3 10.5 250

Figure 10. 3 fractures with same hydraulic conductivities but different apertures and lengths in a
uniform flow field with prescribed parameters of Table 4.

To highlight the capability of our proposed method, further simulations were carried
out for the systems consists of 10 and 50 fractures randomly oriented in the uniform flow
fields as shown in Figures 11 and 12 with prescribed parameters of Tables 5 and 6.
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Figure 11. 10 fractures with same hydraulic conductivities and parameters given in Table 5.

Figure 12. 50 fractures of the same hydraulic conductivities with parameters given in Table 6.

Table 5. Described parameters for Figure 11.

Fracture b (m) Length (m)

1 5.0 150
2 0.5 150
3 10.5 200
4 20.5 200
5 1.02 200
6 0.003 100
7 25.8 100
8 0.7 150
9 30 200
10 0.9 200

The results obtained for all the test cases in this subsection demonstrate the expected
flow behavior of the streamlines and piezometric contours in the uniform flow fields as
described in literature, see [7,16].
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Table 6. Parameters given for Figure 12.

Fracture Width (m) Length (m) Fracture Width (m) Length (m)

1 0.01 20 26 0.6 100
2 0.05 100 27 0.003 100
3 0.5 100 28 0.005 200
4 0.1 100 29 0.0006 100
5 0.02 100 30 0.9 150
6 0.003 100 31 0.1 150
7 0.8 100 32 0.6 150
8 0.7 100 33 0.8 150
9 1 100 34 0.4 250
10 0.9 100 35 1 100
11 0.05 100 36 2 100
12 7 150 37 0.8 150
13 0.06 150 38 0.8 100
14 0.6 100 39 0.1 80
15 0.7 200 40 0.01 100
16 2 200 41 0.6 100
17 0.09 100 42 0.7 100
18 0.8 100 43 0.8 110
19 0.05 100 44 0.9 90
20 0.7 100 45 0.6 120
21 0.03 100 46 0.7 50
22 0.05 100 47 0.8 70
23 0.06 100 48 0.4 50
24 0.8 100 49 0.5 100
25 0.8 100 50 1 60

7. Conclusions

The work presented in this article is composed of 2-dimensional groundwater flow
for fractured porous media with different aperture of fractures by using the Analytic
Element Method. In order to investigate the flow behavior and its effect on fractures,
we simulate different systems of fractures with varying widths, hydraulic conductivities
and orientations in the presence of uniform flow field and a well with an appropriate
technique of matrix method as a direct solver. The prescribed work indicates that the high
conductivity of the fractures lead the flow through it’s limited widths, which controls the
uniform flow field and summarize that if the hydraulic conductivity inside the fractures is
high than the background, the streamlines enters whereas the piezometric contours avoid
to enter or vice versa. This yields that the fractures widths and orientations have substantial
impact on the uniform flow field for which the generated streamlines are continuous and
appropriately depict the expected flow behavior in the desired region.
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