Simpson’s Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Applications to Simpson’s Cubature Formula
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s- convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 9. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E.; Dragomir, S.S. New some Hadamard’s type inequalities for co-ordinated convex functions. Tamsui Oxf. J. Inform. Math. Sci. 2012, 28, 137–152. [Google Scholar]
- Park, J. Hermite and Simpson-like type inequalities for functions whose second derivatives in absolute values at certain power are s-convex. Int. J. Pure Appl. Math. 2012, 78, 587–604. [Google Scholar]
- Gao, S.; Shi, W. On new inequlities of Newton’s type for functions whose second derivatives absolute values are convex. Int. J. Pure Appl. Math. 2012, 74, 33–41. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton’s inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
- Dragomir, S.S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S. On some new inequalities for differentiable co-ordinated convex functions. J. Inequal. Appl. 2012, 2012, 28. [Google Scholar] [CrossRef] [Green Version]
- Erden, S.; Sarikaya, M.Z. On the Hermite-Hadamard-Type and Ostrowski Type inequalities for the co-ordinated convex functions. Palest. J. Math. 2017, 6, 257–270. [Google Scholar]
- Sarikaya, M.Z. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. Some inequalities for differentiable co-ordinated convex mappings. Asian-Eur. J. Math. 2015, 8, 1550058. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. The Hadamard’s inequality for s-convex function of 2– variables on the co-ordinates. Int. J. Math. Anal. 2008, 2, 629–638. [Google Scholar]
- Latif, M.A.; Alomari, M. On Hadmard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. 2009, 3, 1645–1656. [Google Scholar]
- Alomari, M.; Darus, M. On the Hadamard’s inequality for log-convex functions on the coordinates. J. Inequal. Appl. 2009, 2009, 283147. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for co-ordinated convex functions. Turk. J. Anal. Number Theory 2014, 2, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Integral inequalities for coordinated harmonically convex functions. Complex Var. Elliptic Equ. 2015, 60, 776–786. [Google Scholar] [CrossRef]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Askar, S.; Abouelregal, A.E.; Khedher, K.M. Refinements of Ostrowski type integral inequalities involving Atangana–Baleanu fractional integral operator. Symmetry 2021, 13, 2059. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Set, E.; Sarikaya, M.Z. Some new Hadamard type inequalities for co-ordinated m-convex and (α,m)-convex functions. Hacet. J. Math. Stat. 2011, 40, 219–229. [Google Scholar]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New Estimations of Hermite–Hadamard Type Integral Inequalities for Special Functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Kavurmaci, H.; Akdemir, A.O.; Avci, M. Inequalities for convex and s-convex functions on Δ = [a,b] × [c,d]. J. Inequal. Appl. 2012, 2012, 20. [Google Scholar] [CrossRef] [Green Version]
- Chen, F. Generalizations of inequalities for differentiable co-cordinated convex functions. Chin. J. Math. 2014, 2014, 741291. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftikhar, S.; Erden, S.; Ali, M.A.; Baili, J.; Ahmad, H. Simpson’s Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas. Fractal Fract. 2022, 6, 33. https://doi.org/10.3390/fractalfract6010033
Iftikhar S, Erden S, Ali MA, Baili J, Ahmad H. Simpson’s Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas. Fractal and Fractional. 2022; 6(1):33. https://doi.org/10.3390/fractalfract6010033
Chicago/Turabian StyleIftikhar, Sabah, Samet Erden, Muhammad Aamir Ali, Jamel Baili, and Hijaz Ahmad. 2022. "Simpson’s Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas" Fractal and Fractional 6, no. 1: 33. https://doi.org/10.3390/fractalfract6010033
APA StyleIftikhar, S., Erden, S., Ali, M. A., Baili, J., & Ahmad, H. (2022). Simpson’s Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas. Fractal and Fractional, 6(1), 33. https://doi.org/10.3390/fractalfract6010033