Further Integral Inequalities through Some Generalized Fractional Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Corrigendum to a Recently Published Result
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional–calculus operators based upon the fox–wright and related higher transcendental functions. J. Adv. Eng. Comput. 2021, 5, 135–166. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- El-Nabulsi, A.R. Fractional elliptic operators from a generalized Glaeske–Kilbas–Saigo–Mellin transform. Funct. Anal. Approx. Comput. 2015, 7, 29–33. [Google Scholar]
- Srivastava, H.M. Some families of Mittag–Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Srivastava, H.M.; Saxena, R.K. operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Srivastava, H.M. Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag—Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag–Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities Pertaining to some new generalized fractional integral operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
- Mohammed, P.O. New generalized Riemann–Liouville fractional integral inequalities for convex functions. J. Math. Inequal. 2021, 15, 511–519. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain new proportional and Hadamard proportional fractional integral inequalities. J. Inequal. Appl. 2021, 2021, 71. [Google Scholar] [CrossRef]
- Kumar, D.; Purohit, S.D.; Choi, J. Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials. J. Nonlinear Sci. Appl. 2016, 9, 8–21. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, A.R. Glaeske–Kilbas–Saigo fractional integration and fractional dixmier rrace. Acta Math. Vietnam. 2012, 7, 149–160. [Google Scholar]
- Guessab, A.; Schmeisser, G. Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 2002, 115, 260–288. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Zhangb, Z.H.; Wu, Y.D. Some further refinements and extensions of the Hermite-–Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Yıldız, C.; Akdemir, A.O.; Set, E. On some inequalities for s-convex functions and applications. J. Inequal. Appl. 2013, 2013, 333. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M.E.; Sarıkaya, M.Z. Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are m-convex. AIP Conf. Proc. 2010, 1309, 861–873. [Google Scholar]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite–Hadamard–type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Hwang, S.-R.; Yeh, S.-Y.; Tseng, K.-L. On some Hermite–-Hadamard inequalities for fractional integrals and their applications. Ukr. Math. J. 2020, 72, 464–484. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Jarad, F.; Uurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Hyder, A.; Barakat, M.A. Novel improved fractional operators and their scientific applications. Adv. Differ. Equ. 2021, 2021, 389. [Google Scholar] [CrossRef]
- El-Nabulsi, A.R.; Wu, G.C. Fractional complexified field theory from Saxena–Kumbhat fractional integral, Fractional derivative of order (α,β) and dynamical fractional integral exponent. Afr. Diaspora J. Math. New Ser. 2012, 13, 45–61. [Google Scholar]
- Purohit, S.D.; Suthar, D.L.; Kalla, S.L. Marichev–Saigo–Maeda fractional integration operators of the Bessel functions. Matematiche (Catania) 2012, 67, 21–32. [Google Scholar]
- Purohit, S.D.; Kalla, S.L.; Suthar, D.L. Fractional integral Operators and the Multiindex Mittag–Leffler functions. Sci. Ser. Math. Sci. 2011, 21, 87–96. [Google Scholar]
- Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite–Hadamard type inequality and its estimations via generalized convex functions of Raina type. Math. Model. Numer. Simul. Appl. 2021, 1, 32–43. [Google Scholar] [CrossRef]
- Bougoffa, L. On Minkowski and Hardy integral inequality. JIPAM. J. Inequal. Pure Appl. Math. 2006, 7, 60. [Google Scholar]
- Nisar, K.S.; Tassaddiq, A.; Rahman, G.; Khan, A. Some inequalities via fractional conformable integral operators. J. Inequal. Appl. 2019, 2019, 217. [Google Scholar] [CrossRef]
- Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Yang, Y.; Saleem, M.S.; Ghafoor, M.; Qureshi, M.I. Fractional integral inequalities of Hermite—Hadamard type for differentiable generalized h-convex functions. J. Math. 2020, 2020, 2301606. [Google Scholar] [CrossRef]
- Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense. AIMS Math. 2021, 6, 7719–7732. [Google Scholar] [CrossRef]
- Lai, D.; Jin, J. The dual Brunn–Minkowski inequality for log–volume of star bodies. J. Inequal. Appl. 2021, 2021, 112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyder, A.-A.; Barakat, M.A.; Fathallah, A.; Cesarano, C. Further Integral Inequalities through Some Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 282. https://doi.org/10.3390/fractalfract5040282
Hyder A-A, Barakat MA, Fathallah A, Cesarano C. Further Integral Inequalities through Some Generalized Fractional Integral Operators. Fractal and Fractional. 2021; 5(4):282. https://doi.org/10.3390/fractalfract5040282
Chicago/Turabian StyleHyder, Abd-Allah, Mohamed A. Barakat, Ashraf Fathallah, and Clemente Cesarano. 2021. "Further Integral Inequalities through Some Generalized Fractional Integral Operators" Fractal and Fractional 5, no. 4: 282. https://doi.org/10.3390/fractalfract5040282
APA StyleHyder, A. -A., Barakat, M. A., Fathallah, A., & Cesarano, C. (2021). Further Integral Inequalities through Some Generalized Fractional Integral Operators. Fractal and Fractional, 5(4), 282. https://doi.org/10.3390/fractalfract5040282