Next Article in Journal
Hexagonal Grid Computation of the Derivatives of the Solution to the Heat Equation by Using Fourth-Order Accurate Two-Stage Implicit Methods
Previous Article in Journal
Extreme Multistability of a Fractional-Order Discrete-Time Neural Network
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a Neutral Itô and Arbitrary (Fractional) Orders Stochastic Differential Equation with Nonlocal Condition

by
Ahmed M. A. El-Sayed
* and
Hoda A. Fouad
*
Faculty of Science, Alexandria University, Alexandria 21568, Egypt
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2021, 5(4), 201; https://doi.org/10.3390/fractalfract5040201
Submission received: 1 September 2021 / Revised: 31 October 2021 / Accepted: 1 November 2021 / Published: 5 November 2021

Abstract

:
In this paper, we are concerned with the combinations of the stochastic Itô-differential and the arbitrary (fractional) orders derivatives in a neutral differential equation with a stochastic, nonlinear, nonlocal integral condition. The existence of solutions will be proved. The sufficient conditions for the uniqueness of the solution will be given. The continuous dependence of the unique solution will be studied.

1. Introduction

The existence and uniqueness of solutions to stochastic differential equations driven by the Winner Processes have been studied by many authors (see [1,2,3,4,5] ).
In addition, the stochastic differential equations with nonlocal conditions and of fractional orders have been studied by some authors (see, for example, [6,7,8] and references therein).
The results are important since they cover nonlocal generalizations of differential SDEs, and more applications are arising in fields such as heat conduction, electromagnetic theory and dynamical systems and in materials with memory (see, e.g., [9,10,11,12,13,14,15,16,17]), optimal fractional problems and numerical models (see, e.g., [18,19,20,21]).
P. Balasubramaniam et al. [22] obtained sufficient conditions for the existence of a mild solution of the considered system by using analytic resolvent operators, the uniform continuity of the resolvent and Schauder fixed point theorem.
Here we study the existence of solutions of an It o ^ and arbitrary (fractional) orders stochastic nonlinear differential equation with nonlocal integral conditions containing the involved Caputo fractional order derivative. We combined two different senses of derivatives and stated the conditions for the existence of at least one solution.
Let ( W ( t ) ) , t 0 be a standard Brownian motion on a complete probability space ( Ω , ϝ , μ ) , where Ω is a sample space, ϝ is a σ algebra and μ is a probability measure.
Let x ( t ; ω ) = x ( t ) , t [ 0 , T ] , ω Ω be a second order stochastic process, i.e., E ( x 2 ( t ) ) < + , t [ 0 , T ] .
Let C = C ( [ 0 , T ] , L 2 ( Ω ) ) be the space of all second order mean square (m.s) continuous stochastic processes on [ 0 , T ] . The norm of x C ( [ 0 , T ] , L 2 ( Ω ) ) is given by
x C = sup t [ 0 , T ] x ( t ) 2 , x ( t ) 2 = E ( x 2 ( t ) ) .
Let α , β ( 0 , 1 ] be such that α β and I = [ 0 , T ] . In this paper we study the existence of solutions x C ( I , L 2 ( Ω ) ) of the It o ^ arbitrary (fractional) orders stochastic nonlinear differential equation
d ( d x ( t ) d t g ( t , x ( ϕ ( t ) ) ) = f ( t , D α x ( t ) ) ) d W ( t ) , t I
subject to
d x d t t = 0 = g ( 0 , x ( ϕ ( 0 ) ) ) , x ( 0 ) + 0 τ h ( s , D β x ( s ) ) d W ( s ) = x 0
where x 0 is a second-order random variable.
The existence of solutions x C ( I , L 2 ( Ω ) ) of the problem (1)–(2) is proved. The sufficient conditions for the uniqueness of the solution will be given. The continuous dependence of the solution on the random variable x 0 and the random function h will be studied.
The definitions of arbitrary (fractional) integral and derivatives have been studied by [23].
Definition 1.
Let x C ( I , L 2 ( Ω ) ) and α , β ( 0 , 1 ] . The stochastic fractional order integral I β x ( t ) is defined by
I β x ( t ) = 0 t ( t s ) β 1 Γ ( β ) x ( s ) d s ,
and the stochastic fractional order derivative is defined by
D α x ( t ) = I 1 α d x d t .
For the properties to stochastic fractional calculus, see [23].
Consider the following assumptions
(B1)
ϕ : [ 0 , T ] [ 0 , T ] is a continuous function such that ϕ ( t ) t .
(B2)
f : I × L 2 ( Ω ) L 2 ( Ω ) is measurable in t I for all x L 2 ( Ω ) and continuous in x L 2 ( Ω ) for all t I and there exists a bounded measurable function k : I R and a positive constant b such that
f ( t , x ) 2 | k ( t ) | + b x ( t ) 2 .
(B3)
h : I × L 2 ( Ω ) L 2 ( Ω ) is measurable in t I for all x L 2 ( Ω ) and continuous in x L 2 ( Ω ) for all t I and there exists a bounded measurable function m : I R and a positive constant c such that
h ( t , x ) 2 | m ( t ) | + c x ( t ) 2 .
(B4)
g : I × L 2 ( Ω ) L 2 ( Ω ) is measurable in t I for all x L 2 ( Ω ) and continuous in x L 2 ( Ω ) for all t I and there exists a bounded measurable function l : I R and a positive constant q such that
g ( t , x ) 2 | l ( t ) | + q x ( t ) 2 .
(B5)
K = sup t I | k ( t ) | , M = sup t I | m ( t ) | , L = sup t I | l ( t ) | .
(B6)
b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) 1 .

2. Integral Representations of the Solution

Integrating Equation (1) we obtain ([24]),
d x ( t ) d t = g ( t , x ( ϕ ( t ) ) ) + 0 t f ( t , D α x ( t ) ) ) d W ( t ) ,
then operating by I 1 α , we obtain
D α x ( t ) = I 1 α d x d t = I 1 α g ( t , x ( ϕ ( t ) ) ) + I 1 α 0 t f ( s , D α x ( s ) ) d W ( s ) .
Let
y ( t ) = D α x ( t ) ,
then we deduce that
y ( t ) = I 1 α g ( t , x ( ϕ ( t ) ) ) + I 1 α 0 t f ( s , y ( s ) ) d W ( s ) = I 1 α g ( t , x ( ϕ ( t ) ) ) + 0 t ( t s ) α Γ ( 1 α ) 0 s f ( θ , y ( θ ) ) d W ( θ ) d s = I 1 α g ( t , x ( ϕ ( t ) ) ) + 0 t ( t s ) α Γ ( 1 α ) 0 s ( f ( θ , y ( θ ) ) . d W d θ ) d θ . d s = I 1 α g ( t , x ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y ( s ) ) d W ( s ) .
Let α β , then D β x ( t ) = I α β y ( t ) . Now, integrating (6) we can obtain
x ( t ) = x 0 0 τ h ( s , I α β y ( s ) ) d W ( s ) + I α y ( t ) .
Then the following lemma is proved.
Lemma 1.
The integral representations corresponding to the solution of the nonlocal problem (1)–(2) is given by
x ( t ) = x 0 0 τ h ( s , I α β y ( s ) ) d W ( s ) + I α y ( t ) ,
y ( t ) = I 1 α g ( t , x ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y ( s ) ) d W ( s ) .

3. Existence Theorem

Let Λ = C ( I , L 2 ( Ω ) ) × C ( I , L 2 ( Ω ) ) be the class of all ordered pairs ( x , y ) , x , y C with the norm
( x , y ) Λ = x C + y C = sup t I x ( t ) 2 + sup t I y ( t ) 2 .
Define the mapping F ( x , y ) = ( F 1 y , F 2 ( x , y ) ) where F 1 y , F 2 ( x , y ) are given by the following stochastic integral equations
F 1 y ( t ) = x 0 0 τ h ( s , I α β y ( s ) ) d W ( s ) + I α y ( t ) , F 2 ( x , y ) ( t ) = I 1 α g ( t , x ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y ( s ) ) d W ( s ) .
Consider the set Q such that
Q = { x , y C ( I , L 2 ( Ω ) ) , ( x , y ) Λ : ( x , y ) Λ = { x ( t ) 2 + y ( t ) 2 } r } .
Now, we have the following existence theorem
Theorem 1.
Let the assumptions (B1)–(B6) be satisfied, then there exists at least one solution ( x , y ) Λ of the problem (9) and (10).
Proof. 
Let ( x , y ) Q , then we have
F 1 y ( t ) 2 x 0 2 + 0 η h ( s , I α β y ( s ) ) d W ( s ) 2 + I α y ( t ) 2 x 0 2 + M T + [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] y C
and
F 2 ( x , y ) ( t ) 2 I 1 α g ( t , x ( ϕ ( t ) ) ) ) 2 + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y ( s ) ) d W ( s ) 2 T 1 α Γ ( 2 α ) [ L + q x C ] + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y ( s ) ) 2 2 d s L T 1 α Γ ( 2 α ) + K T 3 2 α Γ ( 2 α ) + q T 1 α x C Γ ( 2 α ) + b T 3 2 α y C Γ ( 2 α ) .
This implies that
F ( x , y ) Λ = ( F 1 y , F 2 ( x , y ) ) Λ = F 1 y C + F 2 x C x 0 2 + M T + L T 1 α Γ ( 2 α ) + K T 3 2 α Γ ( 2 α ) + q T 1 α x C Γ ( 2 α ) + [ b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] y C
x 0 2 + M T + L T 1 α Γ ( 2 α ) + K T 3 2 α Γ ( 2 α ) + [ q T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] [ x C + y C ] x 0 2 + M T + L T 1 α Γ ( 2 α ) + K T 3 2 α Γ ( 2 α ) + [ q T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] r = r
where
r = x 0 2 + M T + L T 1 α Γ ( 2 α ) + K T 3 2 α Γ ( 2 α ) 1 [ q T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] ,
then the class { F ( x , y ) } is uniformly bounded and F ( x , y ) : Q Q .
Let ( x , y ) Q , t 1 , t 2 [ 0 , T ] , t 1 < t 2 such that | t 2 t 1 | < δ , then
F 1 y ( t 2 ) F 1 y ( t 1 ) = 0 t 2 ( t 2 s ) α 1 Γ ( α ) y ( s ) d s 0 t 1 ( t 1 s ) α 1 Γ ( α ) y ( s ) d s = 1 Γ ( α ) 0 t 1 [ ( t 2 s ) α 1 ( t 1 s ) α 1 y ( s ) d s + 1 Γ ( α ) t 1 t 2 ( t 2 s ) α 1 y ( s ) d s
this implies that
F 1 y ( t 2 ) F 1 y ( t 1 ) 2 r Γ ( α ) [ 0 t 2 ( t 2 s ) 1 α ( t 1 s ) 1 α ( t 2 s ) 1 α ( t 1 s ) 1 α d s + t 1 t 2 ( t 2 s ) α 1 d s ] .
In a similar way,
F 2 ( x , y ) ( t 2 ) F 2 ( x , y ) ( t 1 ) 2 L + q r Γ ( 1 α ) [ 0 t 1 ( t 2 s ) α ( t 1 s ) α ( t 2 s ) α ( t 1 s ) α d s + t 1 t 2 ( t 2 s ) α d s } ] + K + b r Γ ( 2 α ) [ 0 t 1 | ( t 2 s ) 1 α ( t 1 s ) 1 α | 2 d s + t 1 t 2 ( t 2 s ) 2 2 α d s ] .
However,
F ( x ( t 2 ) , y ( t 2 ) ) F ( x ( t 1 ) , y ( t 1 ) ) = ( F 1 y ( t 2 ) , F 2 ( x , y ) ( t 2 ) ) ( F 1 y ( t 1 ) , F 2 ( x , y ) ( t 1 ) ) = ( ( F 1 y ( t 2 ) F 1 y ( t 1 ) , ( F 2 ( x , y ) ( t 2 ) F 2 ( x , y ) ( t 1 ) ) ,
then from (12) and (13), we deduce the equicontinuity of the class { F ( x , y ) ( t ) } on Q .
Consider ( x n , y n ) Q such that L . i . m n ( x n , y n ) = ( x , y ) w . p . 1 where L . i . m denotes the limit in the mean square sense of the continuous second-order process ([23,25,26]) then by the Arzela–Ascoli Theorem [25], the closure of F Q is a compact subset of Λ .
Now applying stochastic Lebesgue dominated convergence Theorem [25], we can obtain
L . i . m n F ( x n , y n ) = ( L . i . m n F 1 y n , L . i . m n F 2 ( x n , y n ) ) = ( L . i . m n { x 0 0 τ h 1 ( s , I α β y n ( s ) ) d W ( s ) + I α y n ( t ) } , L . i . m n { I 1 α g ( t , x n ( ϕ ( t ) ) ) + 0 t ( t s ) α Γ ( 2 α ) f ( s , y n ( s ) ) d W ( s ) } ) = ( F 1 y , F 2 x ) = F ( x , y ) .
This proves that the operator F : Q Q is continuous, and then applying the Schauder Fixed Point Theorem [25], there exists at least one solution ( x , y ) Λ of the problem (9) and (10) x , y C ( I , L 2 ( Ω ) ) .

4. Uniqueness of the Solution

Consider the assumptions
(B2 * )
f : I × L 2 ( Ω ) L 2 ( Ω ) is measurable in t I for all x L 2 ( Ω ) and satisfies the Lipschitz condition
f ( t , u ( t ) ) f ( t , v ( t ) ) 2 b u ( t ) v ( t ) 2 .
(B3 * )
h : I × L 2 ( Ω ) L 2 ( Ω ) is measurable in t I for all x L 2 ( Ω ) and satisfies the Lipschitz condition
h ( t , u ( t ) ) h ( t , v ( t ) ) 2 c u ( t ) v ( t ) 2 .
(B4 * )
g : I × L 2 ( Ω ) L 2 ( Ω ) is measurable in t I for all x L 2 ( Ω ) and satisfies the Lipschitz condition
g ( t , u ( t ) ) g ( t , v ( t ) ) 2 q u ( t ) v ( t ) 2 .
Theorem 2.
Let the assumptions (B2 * )–(B4 * ) and (B5) and (B6) be satisfied, and then the solution of problem (9) and (10) is unique.
Proof. 
Let ( x 1 , y 1 ) and ( x 2 , y 2 ) be two solutions of the problem (9) and (10) on the form
( x ( t ) , y ( t ) ) = ( x 0 0 τ h ( s , I α β y ( s ) ) d W ( s ) + I α y ( t ) , y 0 I 1 α g ( t , x ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y ( s ) ) d W ( s ) ) ,
then we can obtain
x 1 ( t ) x 2 ( t ) 2 0 τ [ h ( s , I α β y 2 ( s ) ) h ( s , I α β y 1 ( s ) ) ] d W ( s ) 2 + I α y 1 ( t ) I α y 2 ( t ) 2 [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) y 1 y 2 C .
Similarly, we can obtain
y 1 ( t ) y 2 ( t ) 2 I 1 α g ( t , x 1 ( ϕ ( t ) ) ) I 1 α g ( t , x 2 ( ϕ ( t ) ) ) 2 + 0 t ( t s ) 1 α Γ ( 2 α ) [ f ( s , y 1 ( s ) ) f ( s , y 2 ( s ) ) ] d W ( s ) ) 2 q T 1 α Γ ( 2 α ) x 1 x 2 C + b T 3 2 α Γ ( 2 α ) y 1 y 2 C .
However,
( x 1 , y 1 ) ( x 2 , y 2 ) Λ = ( x 1 x 2 ) C + ( y 1 y 2 ) C q T 1 α Γ ( 2 α ) x 1 x 2 C + [ b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] y 1 y 2 C [ q T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] [ x 1 x 2 C + y 1 y 2 C ] [ q T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] ( x 1 , y 1 ) ( x 2 , y 2 ) Λ .
This implies that
( 1 [ b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] ) ( x 1 , y 1 ) ( x 2 , y 2 ) Λ 0 .
Then
( x 1 , y 1 ) ( x 2 , y 2 ) Λ = 0
and ( x 1 , y 1 ) = ( x 2 , y 2 ) which proves that the solution of the problem (9) and (10) is unique. □

5. Continuous Dependence

We shall present the main definitions related to the concepts of continuous dependence of the solution [27].
Definition 2.
The solution ( x , y ) Λ of the nonlocal problem (9) and (10) is continuously dependent (on the random initial value x 0 ) if for all ϵ > 0 , there exists δ 1 > 0 such that x 0 x 0 * 2 δ 1 implies that x x * C ϵ .
For this, we have the following theorem.
Theorem 3.
The unique solution of the system (9) and (10) depends continuously on the random data x 0 .
Proof. 
Let ( x * , y * ) be the solution of the system
x * ( t ) = x 0 * 0 τ h ( s , I α β y * ( s ) ) d W ( s ) + I α y * ( t ) y * ( t ) = I 1 α g ( t , x * ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y * ( s ) ) d W ( s ) ,
such that x 0 x 0 * 2 < δ 1 . Then we have
x ( t ) x * ( t ) 2 x 0 x 0 * 2 + 0 τ [ h ( s , I α β y ( s ) ) h ( s , I α β y * ( s ) ) ] d W ( s ) 2 + I α y ( t ) I α y * ( t ) 2 δ 1 + [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] y 1 y 2 C
and
y y * 2 q T 1 α Γ ( 2 α ) x x * C + b T 3 2 α Γ ( 2 α ) y y * C
and we can obtain that
( x , y ) ( x * , y * ) Λ = x x * C + y y * C δ 1 + q T 1 α Γ ( 2 α ) x x * C + [ b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) y y * C δ 1 + [ q T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] ( x , y ) ( x * , y * ) Λ
which gives our result
( x , y ) ( x * , y * ) Λ δ 1 ( 1 [ b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] ) = ϵ .
Definition 3.
The solution ( x , y ) Λ of the nonlocal problem (9) and (10) is continuously dependent (on the random function h ) if for all ϵ > 0 , there exists δ 2 > 0 such that h * ( t , u ( t ) ) h ( t , u ( t ) ) 2 δ 2 implies that x x * C ϵ .
Theorem 4.
The unique solution of the system (9) and (10) depends continuously on the random functions h.
Proof. 
Let ( x * , y * ) be the solution of the system of stochastic integral Equations (9) and (10) such that
x * ( t ) = x 0 0 τ h * ( s , I α β y * ( s ) ) d W ( s ) + I α y * ( t ) y * ( t ) = I 1 α g ( t , x * ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , x * ( s ) ) d W ( s ) .
Let h * ( t , u ( t ) ) h ( t , u ( t ) ) 2 δ 2 then
x ( t ) x * ( t ) 2 0 τ [ h * ( s , I α β y * ( s ) ) h ( s , I α β y ( s ) ) ] d W ( s ) 2 + I α y ( t ) I α y * ( t ) 2 δ 2 T + [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] y y * C .
Similarly, we can obtain
y ( t ) y * ( t ) 2 q T 1 α Γ ( 2 α ) x x * C + b T 3 2 α Γ ( 2 α ) y y * C
and
( x , y ) ( x * , y * ) Λ = x x * C + y y * C δ 2 T + b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] ( x , y ) ( x * , y * ) Λ .
This implies that
( x , y ) ( x * , y * ) Λ δ 2 T 1 [ b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) + c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] = ϵ
which completes the proof. □
Theorem 5.
The unique solution of the system of stochastic integral Equations (9) and (10) depends continuously on the random functions g.
Proof. 
Let ( x * , y * ) be the solutions of the system (9) and (10) such that
x * ( t ) = x 0 0 τ h ( s , I α β y * ( s ) ) d W ( s ) + I α y * ( t ) y * ( t ) = I 1 α g * ( t , x * ( ϕ ( t ) ) ) + 0 t ( t s ) 1 α Γ ( 2 α ) f ( s , y * ( s ) ) d W ( s ) .
Let g * ( t , u ( t ) ) g ( t , u ( t ) ) 2 δ 3 then
x ( t ) x * ( t ) 2 0 τ [ h ( s , I α β y * ( s ) ) h ( s , I α β y ( s ) ) ] d W ( s ) 2 + I α y ( t ) I α y * ( t ) 2 0 τ [ c I α β y * I α β y 2 ] 2 d s + T α Γ ( 1 + α ) y y * C [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) ] y y * C
and
y ( t ) y * ( t ) 2 I 1 α g ( t , x ( ϕ ( t ) ) ) I 1 α g * ( t , x * ( ϕ ( t ) ) ) 2 + 0 t ( t s ) 1 α Γ ( 2 α ) [ f ( s , y ( s ) f ( s , y * ( s ) ] d W ( s ) 2 I 1 α g ( t , x ( ϕ ( t ) ) ) I 1 α g ( t , x * ( ϕ ( t ) ) ) 2 + I 1 α g ( t , x * ( ϕ ( t ) ) ) I 1 α g * ( t , x * ( ϕ ( t ) ) ) 2 + 0 t [ f ( s , y ( s ) ) f ( s , y * ( s ) ) 2 ( t s ) 1 α Γ ( 2 α ) ] 2 d s q T 1 α Γ ( 2 α ) x x * C + δ 3 T 1 α Γ ( 2 α ) + b T 3 2 α Γ ( 2 α ) y y * C .
Now
( x , y ) ( x * , y * ) Λ = x x * C + y y * C δ 3 T 1 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) x x * C + [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) + b T 3 2 α Γ ( 2 α ) ] y y * C δ 3 T 1 α Γ ( 2 α ) + [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) + b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) ] ( x , y ) ( x * , y * ) Λ .
This implies that
( x , y ) ( x * , y * ) Λ T 1 α Γ ( 2 α ) δ 3 1 [ c T α β + 1 2 Γ ( 1 + α β ) + T α Γ ( 1 + α ) + b T 3 2 α Γ ( 2 α ) + q T 1 α Γ ( 2 α ) ] = ϵ
which completes the proof. □

6. An Example

Consider the stochastic differential equation
d ( d x ( t ) d t x ( t ) sin t 30 ( 1 + x ( t ) 2 ) ) = a ( t ) + D 3 4 x ( t ) 9 ( 1 + x ( t ) 2 ) d W ( t ) , t ( 0 , 1 2 ]
subject to
d x d t t = 0 = 0 , x 0 = 0 τ e s D 1 2 x ( s ) 36 + s 2 d W ( s )
where
f ( t , x ( t ) ) 2 1 120 [ | a ( t ) | + x ( t ) 2 ] , g ( t , x ( t ) ) 2 1 30 x ( t ) 2 , h ( t , x ( t ) x 2 36
Easily, the problem (17) with nonlocal integral conditions (18) satisfies all the assumptions (B1)–(B6) of Theorem 1 with b = 1 120 , c = 1 36 , q = 1 30 then there exists at least one solution to the problem (17) on [ 0 , 1 2 ] .

7. Conclusions

Here, we have combined the two senses of derivatives, the stochastic It o ^ -differential and the arbitrary (fractional) orders derivative, for the second-order stochastic process. The existence of solutions has been proved. The sufficient conditions for the uniqueness of the solution have been given. The continuous dependence of the unique solution has been studied.

Author Contributions

Conceptualization, A.M.A.E.-S. and H.A.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the referee and the editor for their valuable comments which led to improvement of this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Adomian, G. Coupled nonlinear stochastic differential equations. J. Math. Anal. Appl. 1983, 92, 427–434. [Google Scholar] [CrossRef] [Green Version]
  2. Elborai, M.M. On some stochastic fractional integro-differential equations. Adv. Dyn. Syst. Appl. 2006, 1, 49–57, ISSN 0973-5321. [Google Scholar]
  3. Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
  4. Hafez, F.M.; El-Sayed, A.M.A.; El-Tawil, M.A. On a stochastic fractional calculus. Fractional Calculus Appl. Anal. 2001, 4, 81–90. [Google Scholar]
  5. Hafez, F.M. The Fractional calculus for some stochastic processes. Stoch. Anal. Appl. 2004, 22, 507–523. [Google Scholar] [CrossRef]
  6. El-Sayed, A.M.A.; Fouad, H.A. On a coupled system of random and stochastic nonlinear differential equations with coupled nonlocal random and stochastic nonlinear integral conditions. Mathematics 2021, 9, 2111. [Google Scholar] [CrossRef]
  7. El-Sayed, A.M.A.; Fouad, H.A. On a Coupled System of Stochastic Ito-Differential and the Arbitrary (Fractional) Order Differential Equations with Nonlocal Random and Stochastic Integral Conditions. Mathematics 2021, 9, 2571. [Google Scholar] [CrossRef]
  8. Elsonbaty, A.R.; El-Sayed, A.M.A. Further nonlinear dynamical analysis of simple jerk system with multiple attractors. Nonlinear Dyn. 2017, 87, 1169–1186. [Google Scholar] [CrossRef]
  9. Mou, D.; Fang, J.; Fan, Y. Discrete localized excitations for discrete conformable fractional cubic–quintic Ginzburg–Landau model possessing the non-local quintic term. Optik 2021, 244, 167554. [Google Scholar] [CrossRef]
  10. Wu, G.Z.; Yu, L.J.; Wang, Y.Y. Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation. Optik 2020, 207, 164405. [Google Scholar] [CrossRef]
  11. Yu, L.J.; Wua, G.Z.; Wanga, Y.; Chenb, Y.X. Traveling wave solutions constructed by Mittag–Leffler function of a (2 + 1)-dimensional space-time fractional NLS equation. Results Phys. 2020, 17, 103156. [Google Scholar] [CrossRef]
  12. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 2016, 83, 224–234. [Google Scholar] [CrossRef]
  13. Wang, B.H.; Wang, Y.; Dai, C.Q.; Chen, Y.X. Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation. Alex. Eng. J. 2020, 59, 4699–4707. [Google Scholar] [CrossRef]
  14. Yin, W.; Cao, J. Nonlocal stochastic differential equations with time-varying delay driven by G-Brownian motion. Math. Meth. Appl. Sci. 2020, 43, 600–612. [Google Scholar] [CrossRef]
  15. Liu, X.; Zhou, Q.; Biswas, A.; Alzahrani, A.K.; Liu, W. The similarities and differences of different plane solitons controlled by (3 + 1)—Dimensional coupled variable coefficient system. J. Adv. Res. 2020, 24, 167–173. [Google Scholar] [CrossRef]
  16. Tsokos, C.P.; Padgett, W.J. Stochastic integral equations in life science and engineering. Int. Stat. Rev. 1973, 412, 15–38. [Google Scholar] [CrossRef]
  17. Wong, E. Stochastic Processes, Informations and Dynamical Systems; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
  18. Arqub, O.A.; Shawagfeh, N. Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis. Math. Methods Appl. Sci. 2021, 44, 7915–7932. [Google Scholar] [CrossRef]
  19. Djennadi, S.; Shawagfeh, N.; Arqub, O.A. A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Solitons Fractals 2021, 150, 111127. [Google Scholar] [CrossRef]
  20. Momani, S.; Arqub, O.A.; Maayah, B. Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard’s equation. Fractals 2020, 28, 2040007. [Google Scholar] [CrossRef]
  21. Momani, S.; Maayah, B.; Arqub, O.A. The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana-Baleanu fractional approach. Fractals 2020, 28, 2040010. [Google Scholar] [CrossRef]
  22. Balasubramaniam1, P.; Tamilalagan1, P. The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent Operators. J. Optim. Theory Appl. 2017, 174, 139–155. [Google Scholar] [CrossRef]
  23. El-Sayed, A.M.A. On the stochastic fractional calculus operators. J. Fract. Calc. Appl. 2015, 6, 101–109. [Google Scholar]
  24. Krylov, N.V. On Itô’s stochastic integral equations. Theory Probab. Its Appl. 1967, 14, 330–336. [Google Scholar] [CrossRef]
  25. Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
  26. El-Sayed, A.M.A.; El-Tawil, M.A.; Saif, M.S.M.; Hafez, F.M. The mean square Riemann-Liouville stochastic fractional derivative and stochastic fractional order differential equation. Math. Sci. Res. J. 2005, 9, 142–150. [Google Scholar]
  27. El-Sayed, A.M.A.; Gaafar, F.; El-Gendy, M. Continuous dependence of the solution of Ito stochastic differential equation with nonlocal conditions. Appl. Math. Sci. 2016, 10, 1971–1982. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Sayed, A.M.A.; Fouad, H.A. On a Neutral Itô and Arbitrary (Fractional) Orders Stochastic Differential Equation with Nonlocal Condition. Fractal Fract. 2021, 5, 201. https://doi.org/10.3390/fractalfract5040201

AMA Style

El-Sayed AMA, Fouad HA. On a Neutral Itô and Arbitrary (Fractional) Orders Stochastic Differential Equation with Nonlocal Condition. Fractal and Fractional. 2021; 5(4):201. https://doi.org/10.3390/fractalfract5040201

Chicago/Turabian Style

El-Sayed, Ahmed M. A., and Hoda A. Fouad. 2021. "On a Neutral Itô and Arbitrary (Fractional) Orders Stochastic Differential Equation with Nonlocal Condition" Fractal and Fractional 5, no. 4: 201. https://doi.org/10.3390/fractalfract5040201

APA Style

El-Sayed, A. M. A., & Fouad, H. A. (2021). On a Neutral Itô and Arbitrary (Fractional) Orders Stochastic Differential Equation with Nonlocal Condition. Fractal and Fractional, 5(4), 201. https://doi.org/10.3390/fractalfract5040201

Article Metrics

Back to TopTop