Solvability Issues of a Pseudo-Parabolic Fractional Order Equation with a Nonlinear Boundary Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement of the Problem
2.2. Local Solvability of Problem K: Galerkin Approximations
2.3. Uniqueness of the Local Generalized Solution of the Problem K
2.4. The Existence of a Global Solution to the Problem K (1)–(3) for
2.5. The Uniqueness of the Global Generalized Solution of the Problem K (1)–(3) for
2.6. Solvability of a Problem with Nonlinear Boundary Conditions for One Variant of a Fractional Order Pseudo-Parabolic Equation
3. Discussion and Conclusions
- -
- The questions of unique solvability of boundary value problems are formulated and investigated, the difference of which is that the fractional differentiation operators participate both in the equation itself and in the boundary condition in the form of a nonlinear condition;
- -
- A theorem on the local solvability of the problem K is proved for ;
- -
- The uniqueness theorem of the local solution of the problem K is proved if the conditions are satisfied ();
- -
- The uniqueness theorem of a global solution of the Problem K for and the existence theorem of a global solution of the problem K under the conditions are established;
- -
- For one variant of a pseudo-parabolic equation of fractional order, the existence and uniqueness theorems of a global solution of an initial boundary value problem with nonlinear boundary conditions are proved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Showalter, R.E.; Ting, T.W. Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1970, 1, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Beshtokov, M.K. Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative. Transl. Differ. Uravn 2019, 55, 884–893. [Google Scholar] [CrossRef]
- Tuan, N.A.; Regan, D.O.; Baleanu, D.; Tuan, N.H. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evol. Equ. Control Theory 2020. [Google Scholar] [CrossRef]
- Sousa, C.V.J.; de Oliveira, C.E. Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability. Bull. Braz. Math. Soc. New Ser. 2019, 50, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Korpusov, M.O.; Sveshnikov, A.G. Blow-up of solutions of a Sobolev-type equation with a nonlocal source. Sib. Math. J. 2005, 46, 567–578. [Google Scholar] [CrossRef]
- Bouziani, A. Solvability of nonlinear pseudoparabolic equation with a nonlocal boundary condition. Nonlinear Anal. 2003, 55, 883–904. [Google Scholar] [CrossRef]
- Su, R.; Xu, J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 2013, 264, 2732–2763. [Google Scholar] [CrossRef]
- Nakhushev, A.M. Fractional Calculus and Its Application; Fizmatlit: Moscow, Russia, 2003; p. 272. ISBN 5-9221-0440-3. (In Russian) [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999; p. 368. ISBN 0125588402. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993; p. 976. ISBN 2-8-8124-864-0. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, pp. 325–348. ISBN 9780444518323. [Google Scholar]
- Wang, X.; Xu, R. Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation. Adv. Nonlinear Anal. 2021, 10, 261–288. [Google Scholar] [CrossRef]
- Gopala Rao, V.R.; Ting, T.W. Solutions of pseudo-heat equations in the whole space. Arch. Ration. Mech. Anal. 1972, 49, 57–78. [Google Scholar] [CrossRef]
- Brill, H. A Semilinear Sobolev evolution equation in a Banach space. J. Differ. Equ. 1977, 24, 412–425. [Google Scholar] [CrossRef] [Green Version]
- Berdyshev, A.; Cabada, A.; Karimov, E. On the existence of eigenvalues of a boundary value problem with transmitting condition of the integral form for a parabolic-hyperbolic equation. Mathematics 2020, 8, 1030. [Google Scholar] [CrossRef]
- Beshtokov, M.K. To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative. Izv. Vyssh. Uchebn. Zaved. Mater. 2018, 10, 3–16. [Google Scholar] [CrossRef]
- Beshtokov, M.K. Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving. Russ. Math. 2019, 63, 1–10. [Google Scholar] [CrossRef]
- Binh, H.D.; Hoang, L.N.; Baleanu, D.; Van Ho, T.K. Continuity Result on the Order of a Nonlinear Fractional Pseudo-Parabolic Equation with Caputo Derivative. Fractal Fract. 2021, 5, 41. [Google Scholar] [CrossRef]
- Tuan, N.H.; Huynh, L.N.; Ngoc, T.B.; Zhou, Y. On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 2018, 92, 76–84. [Google Scholar] [CrossRef]
- Ngoc, T.B.; Zhou, Y.; O’Regan, D.; Tuan, N.H. On a terminal value problem for pseudoparabolic equations involving Riemann–Liouville fractional derivatives. Appl. Math. Lett. 2020, 106, 106373. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M. Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Anal. Hybrid. Syst. 2010, 4, 406–413. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some new fractional-calculus connections between Mittag-Leffler functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Alikhanov, A.A. A Priory Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations. Differ. Equ. 2010, 46, 658–664. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Butler, G.; Rogers, T. A Generalization of Lemma of Bihari and Applications to Pointwise Estimates for Integral Equations. J. Math. Anal. Appl. 1971, 33, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Ladyzhenskaia, O.A.; Solonnikov, V.A.; Uraltseva, N.N. Linear and Quasi-Linear Equations of Parabolic Type; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1968; p. 648. [Google Scholar]
- Taukenova, F.I.; Shkhanukov-Lafishev, M.K. Difference methods for solving boundary value problems for fractional differential equations. Comput. Math. Math. Phys. 2006, 46, 1785–1795. [Google Scholar] [CrossRef]
- Kochubei, A.N. Diffusion of fractional order. Differ. Equ. 1990, 26, 485–492. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations. Nonlinear Anal. Theory Methods Appl. 2014, 69, 2677–2682. [Google Scholar]
- Seki, K.; Wojcik, M.; Tachiya, M. Fractional reaction-diffusion equation. J. Chem. Phys. 2003, 119, 2165–2170. [Google Scholar] [CrossRef] [Green Version]
- Berdyshev, A.S.; Aitzhanov, S.E.; Zhumagul, G.O. Solvability of Pseudoparabolic Equations with Non-linear boundary Condition. Lobachevskii J. Math. 2020, 41, 772–1783. [Google Scholar] [CrossRef]
- Makarov, P.A. Destruction of the solution of the initial boundary value problem for the generalized Boussinesq equation with a nonlinear boundary condition. Math. Notes 2012, 92, 567–582. [Google Scholar] [CrossRef]
- Alshin, A.B.; Korpusov, M.O.; Sveshnikov, A.G. Blow-Up in Nonlinear Sobolev Type; Walter de Gruyter Co.: Berlin, Germany, 2011; p. xii+648. ISBN 978-3-11-025527-0. [Google Scholar] [CrossRef]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Springer: New York, NY, USA, 1981; p. 353. ISBN 978-3-540-10557-2. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitzhanov, S.E.; Berdyshev, A.S.; Bekenayeva, K.S. Solvability Issues of a Pseudo-Parabolic Fractional Order Equation with a Nonlinear Boundary Condition. Fractal Fract. 2021, 5, 134. https://doi.org/10.3390/fractalfract5040134
Aitzhanov SE, Berdyshev AS, Bekenayeva KS. Solvability Issues of a Pseudo-Parabolic Fractional Order Equation with a Nonlinear Boundary Condition. Fractal and Fractional. 2021; 5(4):134. https://doi.org/10.3390/fractalfract5040134
Chicago/Turabian StyleAitzhanov, Serik E., Abdumauvlen S. Berdyshev, and Kymbat S. Bekenayeva. 2021. "Solvability Issues of a Pseudo-Parabolic Fractional Order Equation with a Nonlinear Boundary Condition" Fractal and Fractional 5, no. 4: 134. https://doi.org/10.3390/fractalfract5040134
APA StyleAitzhanov, S. E., Berdyshev, A. S., & Bekenayeva, K. S. (2021). Solvability Issues of a Pseudo-Parabolic Fractional Order Equation with a Nonlinear Boundary Condition. Fractal and Fractional, 5(4), 134. https://doi.org/10.3390/fractalfract5040134