Approximate Controllability of Fully Nonlocal Stochastic Delay Control Problems Driven by Hybrid Noises
Abstract
:1. Introduction
- Utilize a reasonable framework of mild solutions and overcome the complex calculations caused by not only fractional differential operators but also fractional Brownian motions and Poisson jumps. Establish the existence and uniqueness of the mild solution to fully nonlocal stochastic delay control problems with both linear and nonlinear fractional noise by two different methods.
- Establish sufficient conditions to the approximate controllability of fully nonlocal stochastic delay control problems. The approximate controllability result is based on the controllability theory of deterministic control problems.
2. Preliminaries
2.1. Fractional Brownian Motions
2.2. Poisson Jumps
2.3. Fractional Differential Operators
- Let , then and
- Let , then and
- and satisfy
- For and ,
- Let and , then the map belongs to .
2.4. Function Spaces
- ;
- , a.s., for all ;
- , a.s., for all .
3. Mild Solutions
3.1. Linear Fractional Noises
3.2. Nonlinear Fractional Noises
3.3. An Estimate
4. Approximate Controllability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cartea, A.; del Castillo-Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 041105. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Mao, X. Stochastic Differential Equations and their Applications; Horwood Publishing: Chichester, UK, 2007. [Google Scholar]
- Paola, M.D.; Alotta, G.; Failla, G.; Pirrotta, A.; Sofi, A.; Zingales, M. The mechanically based non-local elasticity: An overview of main results and future challenges. Phil. Trans. R. Soc. A 2013, 371, 20120433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci. 2021, 189, 105992. [Google Scholar] [CrossRef]
- Paola, M.D.; Zingales, M. Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 2008, 45, 5642–5659. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.; Semperlotti, F. A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc. A 2020, 476, 20200200. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Patnaik, S.; Sidhardh, S.; Semperlotti, F. Applications of distributed-order fractional operators: A Review. Entropy 2021, 23, 110. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, W.; Xu, W.; Sun, H. Distributed order Hausdorff derivative diffusion model to characterize non-Fickian diffusion in porous media. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Wang, B. Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise. J. Differ. Equs. 2019, 268, 1–59. [Google Scholar] [CrossRef]
- Mohammed, W.W. Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise. Math. Meth. Appl. Sci. 2021, 44, 2140–2157. [Google Scholar] [CrossRef]
- Reutskiy, S.; Zhang, Y.; Lin, J.; Sun, H. Novel numerical method based on cubic B-splines for a class of nonlinear generalized telegraph equations in irregular domains. Alex. Eng. J. 2020, 59, 77–90. [Google Scholar] [CrossRef]
- Reutskiy, S.; Zhang, Y.; Lin, J.; Sun, H. A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int. J. Solids Struct. 2020, 202, 398–417. [Google Scholar]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Alotta, G.; Failla, G.; Zingales, M. Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J. Eng. Math. 2017, 143, D4015001. [Google Scholar] [CrossRef]
- Alotta, G.; Failla, G.; Zingales, M. Finite element method for a nonlocal Timoshenko beam model. Finite Elem. Anal. Des. 2014, 89, 77–92. [Google Scholar] [CrossRef]
- Kemppainen, J.; Siljander, J.; Zacher, R. Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equs. 2017, 263, 149–201. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, J.G.; Wang, L. Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equs. 2018, 265, 1044–1096. [Google Scholar] [CrossRef] [Green Version]
- Pozo, J.; Vergara, V.C. Fundamental solutions and decay of fully non-local problems. Discret. Contin. Dyn. Syst. 2019, 39, 639–666. [Google Scholar] [CrossRef] [Green Version]
- Lakhel, E.H.; Hajji, S. Existence and uniqueness of mild solutions to neutral SFDEs driven by a fractional Brownian motion with non-Lipschitz coefficients. J. Numer. Math. Stoch. 2015, 7, 14–29. [Google Scholar]
- Li, K.X. Stochastic delay fractional evolution equations driven by fractional Brownian motion. Math. Methods Appl. Sci. 2014, 38, 1582–1591. [Google Scholar] [CrossRef] [Green Version]
- Pei, B.; Xu, Y. Mild solutions of local non-Lipschitz stochastic evolution equations with jumps. Appl. Math. Lett. 2016, 52, 80–86. [Google Scholar] [CrossRef]
- Caraballo, T.; Garrido-Atienza, M.; Taniguchi, T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. 2011, 74, 3671–3684. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Garrido-Atienza, M.J.; Schmalfuss, B. Random attractors for stochastic evolution equations driven by fractional Brownian motion. SIAM J. Math. Anal. 2014, 46, 2281–2309. [Google Scholar] [CrossRef] [Green Version]
- Hesse, R.; Neamţu, A. Local mild solutions for rough stochastic partial differential equations. J. Differ. Equs. 2019, 267, 6480–6538. [Google Scholar] [CrossRef] [Green Version]
- Babiarz, A.; Niezabitowski, M. Controllability problem of fractional neutral systems: A survey. Math. Probl. Eng. 2017, 2017, 4715861. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, L. Controllability of stochastic game-based control systems. SIAM J. Control Optim. 2019, 57, 3799–3826. [Google Scholar] [CrossRef]
- Lakhel, E.H. Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion. Stoch. Anal. Appl. 2016, 34, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H. Approximate controllability via resolvent operators of Sobolev-type fractional stochastic integrodifferential equations with fractional Brownian motion and Poisson jumps. Bull. Iran. Math. Soc. 2019, 45, 1045–1059. [Google Scholar] [CrossRef]
- Shu, L.; Shu, X.B.; Mao, J. Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order 1 < α < 2. Fract. Calc. Appl. Anal. 2019, 22, 1086–1112. [Google Scholar]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional stochastic control system. Asian Eur. J. Math. 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Dauer, J.; Mahmudov, N. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 2004, 290, 373–394. [Google Scholar] [CrossRef] [Green Version]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Sakthivel, R.; Suganya, S.; Anthoni, S.M. Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl. 2012, 63, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Nualart, D. Stochastic calculus with respect to fractional Brownian motion. Ann. Fac. Sci. Toulouse Math. 2006, 15, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Boufoussi, B.; Hajji, S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a hilbert space. Stat. Probab. Lett. 2012, 82, 1549–1558. [Google Scholar] [CrossRef]
- Chow, P. Stochastic Partial Differential Equations, 2nd ed.; Advances in Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Agarwal, R.P.; dos Santos, J.P.C.; Cuevas, C. Analytic resolvent operator and existence results for fractional integro-differential equations. J. Abstr. Differ. Equ. Appl. 2012, 2, 26–47. [Google Scholar]
- Mahmudov, N.I. Controllability of linear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 2001, 259, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Mahmudov, N.I.; Zorlu, S. Controllability of non-linear stochastic systems. Int. J. Control 2003, 76, 95–104. [Google Scholar] [CrossRef]
- Zabczyk, J. Mathematical Control Theory: Deterministic Finite Dimensional Systems; Springer: New York, NY, USA, 1990. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Fu, Y. Approximate Controllability of Fully Nonlocal Stochastic Delay Control Problems Driven by Hybrid Noises. Fractal Fract. 2021, 5, 30. https://doi.org/10.3390/fractalfract5020030
Yan L, Fu Y. Approximate Controllability of Fully Nonlocal Stochastic Delay Control Problems Driven by Hybrid Noises. Fractal and Fractional. 2021; 5(2):30. https://doi.org/10.3390/fractalfract5020030
Chicago/Turabian StyleYan, Lixu, and Yongqiang Fu. 2021. "Approximate Controllability of Fully Nonlocal Stochastic Delay Control Problems Driven by Hybrid Noises" Fractal and Fractional 5, no. 2: 30. https://doi.org/10.3390/fractalfract5020030
APA StyleYan, L., & Fu, Y. (2021). Approximate Controllability of Fully Nonlocal Stochastic Delay Control Problems Driven by Hybrid Noises. Fractal and Fractional, 5(2), 30. https://doi.org/10.3390/fractalfract5020030