Multi-Strip and Multi-Point Boundary Conditions for Fractional Langevin Equation
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- ()
- is a continuous function;
- ()
- There exists a positive function such thatwhere and ;
- ()
- The continuous function does not vanish identically in ;
- ()
- uniformly in where , and is continuous;
- ()
- There exists a constant such that:
4. Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coffey, W.T.; Kalmykov, Y.P.; Waldron, J.T. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering; World Scientific: Singapore, 2004. [Google Scholar]
- Lim, S.C.; Teo, L.P. The fractional oscillator process with two indices. J. Phys. A Math. Theor. 2009, 42, 065208. [Google Scholar] [CrossRef]
- Lim, S.C.; Li, M.; Teo, L.P. Langevin equation with two fractional orders. Phys. Lett. 2008, 372, 6309–6320. [Google Scholar] [CrossRef]
- Eab, C.H.; Lim, S.C. Fractional Langevin equation of distributed order. arXiv 2010, arXiv:1010.3327. [Google Scholar] [CrossRef]
- Sandev, T.; Tomovski, Z. Fractional Equations and Models: Theory and Applications; Springer Nature: Geneva, Switzerland, 2019. [Google Scholar]
- West, B.J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators; Springer: New York, NY, USA, 2003. [Google Scholar]
- Kobelev, V.; Romanov, E. Fractional Langevin equation to describe anamalous diffusion Prog. Theor. Phys. Suppl. 2000, 139, 470–476. [Google Scholar] [CrossRef]
- Sandev, T.; Metzler, R.; Tomovski, Z. Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise. J. Math. Phys. 2014, 55, 023301. [Google Scholar] [CrossRef]
- Sandev, T.; Metzler, R.; Tomovski, Z. Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 2012, 15, 426. [Google Scholar] [CrossRef]
- West, B.J. Fractal physiology and the fractional calculus: A perspective. Front. Physiol. 2010, 1, 12. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Wienersche Spiralen und einige andere interessante Kurvenim Hilbertschen Raum. Dokl. Acad. Sci. USSR 1940, 26, 115. [Google Scholar]
- Mandelbrot, B.B.; van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422. [Google Scholar] [CrossRef]
- Mainardi, F.; Pironi, P. The fractional Langevin equation:Brownian motion revisted. Extracta Math. 1996, 10, 140–154. [Google Scholar]
- Camargo, R.F.; Chiacchio, A.O.; Charnet, R.; Oliveira, E.C. Solution of the fractional Langevin equation and the Mittag-Leffler functions. J. Math. Phys. 2009, 50, 063507. [Google Scholar] [CrossRef]
- Vinales, A.D.; Desposito, M.A. Anomalous diffusion induced by a Mittag-Leffler correlated noise. Phys. Rev. E 2007, 75, 042102. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zeng, C.; Li, C.; Chen, Y. Numerics for the fractional Langevin equation driven by the fractional Brownian motion. Fract. Calc. Appl. Anal. 2013, 16, 123–141. [Google Scholar] [CrossRef]
- Guo, P.; Li, C.P.; Zeng, F.H. Numerical simulation of the fractional Langevin equation. Therm. Sci. 2012, 16, 357–363. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, P.; Liu, Y. Existence and Numerical Simulation of Solutions forFractional Equations Involving Two Fractional Orders withNonlocal Boundary Conditions. J. Appl. Math. 2013, 2013, 268347. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Fractional Langevin type delay equations with two fractional derivatives. Appl. Math. Lett. 2020, 103, 106215. [Google Scholar] [CrossRef]
- Baghani, H.; Nieto, J.J. On fractional Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Model. Control. 2019, 24, 884–897. [Google Scholar] [CrossRef]
- Zhai, C.; Li, P. Nonnegative Solutions of Initial Value Problems for Langevin Equations Involving Two Fractional Orders. Mediterr. J. Math. 2018, 15, 164. [Google Scholar] [CrossRef]
- Baghani, H. Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders. J. Fixed Point Theory Appl. 2018, 20, 63. [Google Scholar] [CrossRef]
- Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
- Zhai, C.; Li, P.; Li, H. Single upper-solution or lower-solution method for Langevin equations with two fractional orders. Adv. Differ. Equ. 2018, 360, 1–10. [Google Scholar] [CrossRef]
- Baghani, O. On fractional Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simulat. 2017, 42, 675–681. [Google Scholar] [CrossRef]
- Cetin, E.; Topa, F.S. Existence Results for Solutions of Integral Boundary Value Problems on Time Scales. Abstr. Appl. Anal. 2013, 708734, 7. [Google Scholar] [CrossRef]
- Salem, A.; Alzahrani, F.; Alnegga, M. Coupled System of Non-linear Fractional Langevin Equations with Multi-point and Nonlocal Integral Boundary Conditions. Math. Probl. Eng. 2020, 7345658, 15. [Google Scholar]
- Salem, A.; Alzahrani, F.; Almaghamsi, L. Fractional Langevin equation with nonlocal integral boundary condition. Mathematics 2019, 7, 402. [Google Scholar] [CrossRef]
- Zhou, Z.; Qiao, Y. Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. Bound. Value Probl. 2018, 2018, 152. [Google Scholar] [CrossRef]
- Salem, A.; Alzahrani, F.; Alghamdi, B. Langevin equation involving two fractional orders with three-point boundary conditions. Differ. Integral Equ. 2020, 33, 163–180. [Google Scholar]
- Salem, A.; Alghamdi, B. Multi-Point and Anti-Periodic Conditions for Generalized Langevin Equation with Two Fractional Orders. Fractal Fract. 2019, 3, 51. [Google Scholar] [CrossRef]
- Derbazi1, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations withthree-point boundary hybrid conditions. Adv. Differ. Equ. 2019, 2019, 125. [Google Scholar] [CrossRef]
- Lv, Z.-W. Existence of Positive Solution for Fractional Differential Systems with Multi-point Boundary Value Conditions. J. Funct. Spaces Vol. 2020, 9520430, 9. [Google Scholar]
- Sandin, T.R. The jerk. Phys. Teach. 1998, 28, 36–40. [Google Scholar] [CrossRef]
- Schot, S.H. Jerk: The time rate of change of acceleration. Am. J. Phys. 1978, 46, 1090–1094. [Google Scholar] [CrossRef]
- Schot, S.H. Aberrancy: Geometry of the Third Derivative. Math. Mag. 1978, 51, 259–275. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999; Volume 198. [Google Scholar]
- Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64–69. [Google Scholar] [CrossRef]
- Krasnoselski, M.A.; Zabreiko, P.P. Geometrical Methods of Nonlinear Analysis; Springer: New York, NY, USA, 1984. [Google Scholar]
- Olivares-Rivas, W.; Colmenares, P.J. The generalized Langevin equation revisited: Analytical expressions for the persistence dynamics of a viscous fluid under a time dependent external force. Phys. A 2016, 458, 76–94. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, A.; Alghamdi, B. Multi-Strip and Multi-Point Boundary Conditions for Fractional Langevin Equation. Fractal Fract. 2020, 4, 18. https://doi.org/10.3390/fractalfract4020018
Salem A, Alghamdi B. Multi-Strip and Multi-Point Boundary Conditions for Fractional Langevin Equation. Fractal and Fractional. 2020; 4(2):18. https://doi.org/10.3390/fractalfract4020018
Chicago/Turabian StyleSalem, Ahmed, and Balqees Alghamdi. 2020. "Multi-Strip and Multi-Point Boundary Conditions for Fractional Langevin Equation" Fractal and Fractional 4, no. 2: 18. https://doi.org/10.3390/fractalfract4020018
APA StyleSalem, A., & Alghamdi, B. (2020). Multi-Strip and Multi-Point Boundary Conditions for Fractional Langevin Equation. Fractal and Fractional, 4(2), 18. https://doi.org/10.3390/fractalfract4020018