Non-Differentiable Solution of Nonlinear Biological Population Model on Cantor Sets
Abstract
:1. Introduction
2. Basic Definitions
2.1. Local Fractional Derivative
2.2. Local Fractional Integral
2.3. Some Properties of the Local Fractional Operators
3. Local Fractional Homotopy Analysis Method
4. Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cattani, C. A review on Harmonic Wavelets and their fractional extension. J. Adv. Eng. Comput. 2018, 2, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.M.; Zhang, Y.Z.; Cattani, C.; Xie, G.N.; Rashidi, M.M.; Zhou, Y.J.; Yang, X.J. Application of local fractional series expansion method to solve Klein–Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 2014, 372741. [Google Scholar] [CrossRef]
- Yoku, A.; Gülbahar, S. Numerical Solutions with Linearization Techniques of the Fractional Harry Dym Equation. Appl. Math. Nonlinear Sci. 2019, 4, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghafri, K.S.; Rezazadeh, H. Solitons and other solutions of (3 + 1)-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation. Appl. Math. Nonlinear Sci. 2019, 4, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Hammouch, Z.; Baleanu, D. Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Math. Model. Nat. Phenom. 2019, 14, 311. [Google Scholar] [CrossRef]
- Gao, W.; Ghanbari, B.; Baskonus, H.M. New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2019, 128, 34–43. [Google Scholar] [CrossRef]
- Gao, W.; Ismael, H.F.; Mohammed, S.A.; Baskonus, H.M.; Bulut, H. Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with M-fractional. Front. Phys. 2019. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. A powerful approach for fractional Drinfeld–Sokolov–Wilson equation with Mittag–Leffler law. Alex. Eng. J. 2019, 58, 1301–1311. [Google Scholar] [CrossRef]
- Alvaro, H.S.; Lorenzo, J.M.H. Reaction-Diffusion Equations: A Chemical Application. Sci. Tech. 2010, 46, 134–137. [Google Scholar]
- Haff, P.K. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 1983, 134, 401–430. [Google Scholar] [CrossRef] [Green Version]
- Radinschi, I.; Covatariu, G.; Cazacu, M.M. Maple Program for Studying Physics Phenomena with Applications in Civil Engineering. Intersections Intersecţii 2016, 13, 107–118. [Google Scholar]
- Rìos, E.; Stern, M.D. Calcium in Close Quarters: Microdomain Feedback in Excitation-Contraction Coupling and Other Cell Biological Phenomena. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 47–82. [Google Scholar] [CrossRef] [PubMed]
- Al-Mazmumy, M.; Al-Malki, H. The Modified Adomian Decomposition Method for Solving Nonlinear Coupled Burger’s Equations. Abs. Appl. Anal. 2012, 2012, 727031. [Google Scholar] [CrossRef]
- Adomian, G.; Rach, R. Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations. Comput. Math. Appl. 1990, 10, 9–12. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.H. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 203–205. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Liao, S.J. Beyond Perturbation: Introduction to Homotopy Analysis Method; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Liao, S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Liao, S.J. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 983–997. [Google Scholar] [CrossRef]
- Ayub, M.; Rasheed, A.; Hayat, T. Exact flow of a third grade fluid past a porous plate using homotopy analysis method. Int. J. Eng. Sci. 2003, 41, 2091–2103. [Google Scholar] [CrossRef]
- Abbasbandy, S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 2006, 360, 109–113. [Google Scholar] [CrossRef]
- Abbasa, Z.; Vahdatia, S.; Ismaila, F.; Karimi Dizicheha, A. Application of Homotopy Analysis Method for Linear Integro–Differential Equations. Int. Math. Forum 2010, 5, 237–249. [Google Scholar]
- Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 674–684. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S.; Xu, H. A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 2010, 34, 593–600. [Google Scholar] [CrossRef]
- Zhang, Y.; Cattani, C.; Yang, X.J. Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 2015, 17, 6753–6764. [Google Scholar] [CrossRef] [Green Version]
- Maitama, S.; Zhao, W. Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets. Adv. Diff. Equ. 2019, 127, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Mohyud-Din, S.T.; Ali, A.; Bin-Mohsin, B. On biological population model of fractional order. Int. J. Biomath. 2016, 9, 1650070. [Google Scholar] [CrossRef]
- Acan, O.; Mohamed Al Qurashib, M.; Baleanu, D. New exact solution of generalized biological population model. J. Nonlinear Sci. Appl. 2017, 10, 3916–3929. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.J. Fractional Functional Analysis and Its Applications; Asian Academic: Hong Kong, China, 2011. [Google Scholar]
- Yang, X.J. Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Roul, P. Application of Homotopy Perturbation Method to Biological Population Model. Appl. Appl. Math. 2010, 5, 272–281. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziane, D.; Hamdi Cherif, M.; Baleanu, D.; Belghaba, K. Non-Differentiable Solution of Nonlinear Biological Population Model on Cantor Sets. Fractal Fract. 2020, 4, 5. https://doi.org/10.3390/fractalfract4010005
Ziane D, Hamdi Cherif M, Baleanu D, Belghaba K. Non-Differentiable Solution of Nonlinear Biological Population Model on Cantor Sets. Fractal and Fractional. 2020; 4(1):5. https://doi.org/10.3390/fractalfract4010005
Chicago/Turabian StyleZiane, Djelloul, Mountassir Hamdi Cherif, Dumitru Baleanu, and Kacem Belghaba. 2020. "Non-Differentiable Solution of Nonlinear Biological Population Model on Cantor Sets" Fractal and Fractional 4, no. 1: 5. https://doi.org/10.3390/fractalfract4010005
APA StyleZiane, D., Hamdi Cherif, M., Baleanu, D., & Belghaba, K. (2020). Non-Differentiable Solution of Nonlinear Biological Population Model on Cantor Sets. Fractal and Fractional, 4(1), 5. https://doi.org/10.3390/fractalfract4010005