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Abstract: The main objective of this study is to apply the local fractional homotopy analysis method
(LFHAM) to obtain the non-differentiable solution of two nonlinear partial differential equations
of the biological population model on Cantor sets. The derivative operator are taken in the local
fractional sense. Two examples have been presented showing the effectiveness of this method in
solving this model on Cantor sets.
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1. Introduction

Partial differential equations are more important than others, due to their multiple scientific
uses, where they are involved in the study of some phenomena related to human life, organisms
and the universe, such as engineering phenomena, mechanical phenomena, chemical phenomena
and biological phenomena. Also, among the basic tools for analyzing physical phenomena, physical
phenomena, etc., we find fractional and local fractional partial differential equations ([1-8]). Given the
importance of these equations, the knowledge of their solutions is the other more important, because it
enables us to study the phenomenon associated with these equations ([9-13]).

In this field there are many researchers interested in developing several methods that enable us to
solve this kind of equations, among them, for example, are the Adomian decomposition method [14],
homotopy perturbation method [15], variational iteration method [16], DJ-iteration method [17] and
homotopy analysis method [18] and others. All this is to have an ideal method to solve all kinds of
ordinary differential equations as well as all kinds of partial differential equations .

The homotopy analysis method, which was developed in 1992 by Liao Shijun ([18-21]), and has
been used extensively to solve partial or ordinary differential equations or differential systems of
integer order or fractional order ([22-27]). Lately, this method has been extended by S. Maitama and W.
Zhao [28] to solve non-differentiable problems on Cantor sets. The objective of our paper is based on
this method, where we will apply it, to solve two nonlinear partial differential equations for biological
population models on Cantor sets. Note that, these models has been solved and discussed in [29,30]
with Caputo fractional derivative and conformable derivative operator respectively.

2. Basic Definitions

We will present the basic concepts of fractional local calculus, and in particular the local fractional
derivative, local fractional integral, and some important results of this operator.
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2.1. Local Fractional Derivative

Definition 1. Setting g({) € Cy(a,b), the local fractional derivative of g({) of order o at { = (y is given
by ([31,32])
A7(8(8) —8(%o))

@)= == =1 , 1
R - A e AT @
where
A7(g(8) = 8(G0)) = T(1+0) [(g(2) —&(0))], €
and Cy(a,b), designates the class of functions called local fractional continuous on the interval (a, b).
The high-order local fractional derivative of g({) is
n times
—_———
§") () =D Dg(2). 3)
2.2. Local Fractional Integral
Definition 2. The local fractional integral of g({) of order o in [a, b] is defined as ([31,32])
(o) _ 1 /.b o
1 N-1
= lim Y f(Z)(AZ))°, (4)

I'(14+0)ag—0 =

where Alj = Cjt1 — {j, AL = max{Afo, A1, ALy, - -~} and [{j, (4], o = a, {n = b, is a partition
of [a, b].
2.3. Some Properties of the Local Fractional Operators

The local fractional operators fulfill some fundamental equations. In particular, starting from the
Mittag-Leffler function we have the following

400 mo
oy _ 4
E(r(é)*mgom, O0<o<1, (5)
. o T . g(Zm—«—l)a
sing (%) = ,EO(‘” T+ @mi Do)y °-7St (6)
cosy (%) = ﬁ(—l)m&, 0O<o<1. )

By using the local fractional derivative (1) and the definitions (3) it can be easily shown
that ([31,32])
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3. Local Fractional Homotopy Analysis Method

Maitama and Zhao [28] introduced the basis idea of this method, where they considered the
nonlinear partial differential equation with local fractional derivative

N [w(x,2)] =0, (13)

where N denote the nonlinear operator, w(x, ¢) is the local fractional unknown function. By using the
homotopy analysis method [18], we construct a convex non-differentiable homotopy

(1 =q)Lele(x, & q) —wo(x, O)] = ghH(x, O)NIe(x, & 9)], (14)

with the embedding parameter g € [0,1], i # 0 is the nonzero convergence-control parameter,
H(x,{) # 0is the local fractional nonzero auxiliary function, ¢(x, {;q) is the local fractional unknown
function, and wy(x, ¢) is an initial guess of w(x, (), Lo = % denote the linear local fractional operator,
such as

LU [(P(X/ é)] = O' when GD(X/ g) =0. (15)
According to homotopy analysis method, when g = 0 and 4 = 1, we have

¢(x,5;0) = wo(x,¢) and ¢(x, 5;1) = w(x, 0), (16)

respectively. Thus as ¢ increases from 0 to 1, the solution ¢(x, {; ) varies from wy(x, {) to w(x, {). The
expanding of ¢(x, {; q) with respect to g, is given by

+o0
e(x.5q) =wo(x,0) + Y wm(x, 0)q™, (17)
m=1
where 1 g ( . )
B (X, 39
o) = [t "

At the correct selection of the auxiliary linear operator, the initial guess, and the
convergence-control parameter, the (17) converges at g = 1

—+oc0

w(x,¢) =wo(x, ) + 3 wm(x,0), (19)
m=1
it is a solution of (13).
The local fractional vector is given by
wy = {wo(x,¢), w1(x, ), -, wm(x,O) }- (20)

Differentiating of (14) m-times with respect to g4 and then setting 4 = 0 and finally dividing by
m! gives
L(T [le (X/ g) — EmWm—1 (X' g)] =hH (X/ g) éRm (Wm, X g)/ (21)

where

1 9" 'Nlpx. &)

(m - 1)! aqm—l q=0,

(22)
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and

0 m<1
sy 23
&m {1,m>1. (23)

By applying the local fractional integral operator to (21), we get

Wn(@,0) = mWn-1(X,) — Gm Z wiy 4 (x,0%) (15:11)
1" [H (1,§) Rou (Wi, 2, 2)] 24)
The series solutions of w, (x, {) for m > 1 are given by
+oo
0) = EO Wi (X, €)- (25)

For the convergence of the series (25), you can see [28].

4. Applications

In this section, we will apply the method described above which is attributed to Maitama and
Zhao [28] to solve two nonlinear partial differential equations. These equations are called “biological
population models” where the derivative operator are taken in the local fractional sense.

Example 1. First, we consider the local fractional nonlinear biological population model

® 9T w? 9P ? 8
— _ —_ p— <
il o (1 + 9w) 0,0<0<1, (26)
subject to the IC
1
@(17,1,0) = Eq (3 (n+ u)") : (27)

According to (26) and based on the steps of this method, we choose @y(n, t,{) = Ey (% (n+ ,u)g) to be
the initial guess.
We can take the linear operator as

2

d
LoloCn m &l = 57z lotn w &)l (28)
The nonlinear operator is given as

v e Ga) e wGa) 9% (i, Ta)
Nle(n,n.&9)l = 207 prex 2

+o(n, 1,8 q) (1 + gqv(m w C;q)) : (29)

Based on the previous LFHAM ( LFHAM is Local Fractional Homotopy Analysis Method) steps, the
zero-order deformation equation becomes

(1 —q)Lle(n, 1, 59) — @o(n, 1, 0)] = qiH(n, 1w, O)N{@(n, 1,8 q)]- (30)

This leads to: when q = 0 and q = 1, we get

@(11,1,5,0) = @0 (17, 1, §), and @(y,1,5;1) = @(n, 4, C)- (31)
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Then the M!"-order deformation equation is defined as

Lo[@n (1, 1,0) = ¢m®@m—1 (1, #,0)] = BH (17,1, 0) Ron ($m—1,1, 1, ), (32)
where
_ Fo(ul)  Fo(gul) @y, pQ)
§Rm($m—11’7r]’l/(;) - agg - 81’]2‘7 - aVZU'
@1, 1,0) <1+§w(77,u,6)) (33)
and
o= { st o

Applying the local fractional integral on (32) and setting H(n, 1, ) = 1, we have

@m(1,1,0) = cm®@u-1(1,14,8) — cmw(n, 1,0)

@(n,1,0) (1+5@(y, 1,2))
+hpls” [ CE Sl | Fetud) |- (35)
31720 aHZV
According to (35), we obtain
20 2 20 2
@1 = ol o+ § (@) - ZoR - len?]
@n = (1+1)@y_1 + oL [@m L+ 3T i1 (36)
_hOI( [aa;; (Z:no @@y —1- z) 2 (Z:no @Oi@Omy—1- z)} ,m> 1
Through the two formulas (36), the first terms of the solution the first terms of (26), are given by
1 o
@o(n,1,¢) = Eo (3 (n+ 1)),
@1 (1,4, ¢) = MEq (3 (7 +p) ) (ﬁg),
2 2 20
@201,1,8) = Ex (§ 07+ )") [ (n+ ) i) + 't ; (37)
R+ i 2 (K2 0%
@3(1,1,0) = Es (% (1 ~|—y)‘7) (1+cr)3 3(17 ) T(1+20) ,
+h 1”(1+3(7)

and so on. The other terms of LFHAM can be calculated in the same way. Finally, the non-differentiable solution
@ of (26) in a series, is given by

1 1+h(3+ 3h +12) &
@(n,p,¢) = Eo (3 (n+ W) 2 ( 2 T : (38)
17 (3+2h) ¢ (1+2{7) g T
By replacing h = —1 in (38), we get
S OO A < SO S S
o(1.,8) = Eo (3 U1 ) ) {1 fito) TA+2) TA+a0) ) 9)

and also

@1 8) = B (3 (4107 ) Ee (=2 = Eo (5 07 = 7). (0)
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Note that, in the case ¢ = 1, we obtain the same solution obtained in [33] by homotopy perturbation method.

Example 2. Next, we consider the other local fractional nonlinear biological population model

%@ _ 32‘7@2 82‘70’)2

oz~ o T +kKo=00<0<1,

where k is a constant and with the initial condition

@(1,1,0) = (\/i71)" .

According to (41) and based on the steps of this method, we choose @y (17, 1, C) = (/7] y)g.

We take the linear operators as

o

Lo [o(n, 1. 89)] = aagg [o(n, 1,5 q)] -

The nonlinear operator is given as

(1, 027 9?(n, 1, ;
Niptrn o) — TG0 et

P79 (n, 1, &

- qoa(Zz(]: q)—k”fp(m#,é;q)-

Based on the previous LEFHAM steps, the zero-order deformation equation becomes
(L =a)Llo(y 1, &q) = @o(y, 1, 0)] = qhH (1, 1, N[ (1, 1, & 9)]-
This leads to: when q = 0 and q = 1, we get

@(11,1,5,0) = @o (17, 1, §), and ¢(n, 1, 5;1) = @(n, 4, ¢)-

Then the M™-order deformation equation is defined as follows

Lo[@m (17, 1,8) — 6m@m—1(n, 1, 0)] = 1H (11,11, 8) Ron ($m—1,1, 1, §),

where
°@(n,1,g)  9%%(n,u,Q)
%m ($m—]/ 17/ ,u/ g) = aé’g o 87720
820032 LU,
W — Ko, u1,0)
and
)0 m<1,
&m = 1, m>1.

Applying the local fractional integral on (47) and setting H(n, i, {) = 1, we obtain

@u(1,1,0) = cm@u—1(1,1,0) — cme@(17,2,0)

aZa 2 aZa 2
_hﬁlv(cg)[ @ (77/;”/5) + @ (77/,‘”/@) +k0(«0(77,]1,g) )

877217 a‘u2c7

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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According to the Equation (50), we obtain

20 2 20 2
@101, 1,¢) = ~hol{” {a g0 4 &l +k‘7wo} :
@ (1,1,0) = (1+ 1) @p_1 — L") [k @y1] (51)

20 _ 20 —
_h()léa) [aaﬂza (Z;'ﬂ:ol (Diwmflfi) + BELW (Z;n:ol (Diwmflfi)} ,m>1

Through to the formulas (51), the first terms of local fractional homotopy analysis method of (41), are
given by
@o(1,1,0) = (vA)°,
@1(1,1,0) = =1 (V) el

o o 20
@2(1,1,8) = (VITR) (=) (1+ 1) (A5 + i ]

o 52)
o (_h) (1 h)z r((lfga) (
(E3(17/ ]’l’g) (\/ 17]/{) k)27 k037 ,
+2 (hz h3) 1"((1220) h3 FEli-)SU)

and so on. Finally, the non-differentiable solution @ of (41), is

1+ (=) (3+30+12) {55+
@(n,1,¢) = (VIr)” 20 v (53)
+1 (3 +21) rgi)za) o rglﬁw) e
By replacing h = —1 in (53), we get
_ o (kg)” (kg)* (kg)*
@01, p,8) = (VIF) [1 TTito) T T2 TT 130 T ] / G4
and

@(1,1,¢) = (v11)” Eo (k7). (55)

Note that, in the case o = 1, we obtain the same solution obtained in [33] by homotopy perturbation method
and by conformable reduced differential transform method in [30].

5. Conclusions

In our study, the LFHAM method was applied successfully to local fractional biological population
models and the results have been compared with integer order in [30]. The use of the LFHAM method
is used to obtain the non-differentiable solution of nonlinear biological population models on Cantor
sets. It was shown that this method is powerful and effective because it enabled us to solve these two
nonlinear local fractional partial differential equations. By this method, the solution is given in the
form of a series that converges quickly to the exact solution if it exists. This is confirmed by the results
obtained after the application of this method to the two examples proposed in this work. Therefore, it
can be said that the LFHAM can be applied to solve other nonlinear partial differential equations with
local fractional derivative.
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