# European Vanilla Option Pricing Model of Fractional Order without Singular Kernel

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction and Some Preliminaries

**Definition**

**1.**

**Definition**

**2.**

**Definition**

**3.**

## 2. Description of the Method Using the Caputo–Fabrizio Fractional Operator

## 3. Solution of the European Option Pricing Problem

#### 3.1. Fractional European Option Pricing Problem in the Sense of the Caputo–Fabrizio Derivative

#### 3.2. Fractional Generalized European Option Pricing Problem in the Sense of the Caputo–Fabrizio Derivative

## 4. Determining Stabilization and Convergence of Suggested Method

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

FDE | Fractional differential equation |

LHAM | Laplace homotopy analysis method |

CF | Caputo–Fabrizio |

AB | Atangana–Baleanu |

LT | Laplace transform |

FC | Fractional calculus |

ENSO | El Niño–Southern Oscillation |

FBSE | Fractional Black–Scholes equation |

GFBSE | Generalized fractional Black–Scholes equation |

## References

- Gómez-Aguilar, J.F.; Morales-Delgado, V.F.; Taneco-Hernández, M.A.; Baleanu, D.; Escobar-Jiménez, R.F.; Al Qurashi, M.M. Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels. Entropy
**2016**, 18, 402. [Google Scholar] [CrossRef] - Özdemir, N.; Yavuz, M. Numerical solution of fractional Black–Scholes equation by using the multivariate Padé approximation. Acta Phys. Pol. A.
**2017**, 132, 1050–1053. [Google Scholar] [CrossRef] - Yavuz, M.; Özdemir, N.; Okur, Y.Y. Generalized differential transform method for fractional partial differential equation from finance. In Proceedings of the International Conference on Fractional Differentiation and its Applications, Novi Sad, Serbia, 18–20 July 2016; pp. 778–785. [Google Scholar]
- Alkahtani, B.S.T.; Koca, I.; Atangana, A. Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function. Adv. Mech. Eng.
**2017**, 9, 1–8. [Google Scholar] [CrossRef] - Momani, S.; Qaralleh, R. Numerical approximations and Padé approximants for a fractional population growth model. App. Math. Model.
**2007**, 31, 1907–1914. [Google Scholar] [CrossRef] - Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul.
**2009**, 14, 674–684. [Google Scholar] [CrossRef] - Evirgen, F.; Özdemir, N. Multistage Adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system. J. Comput. Nonlinear Dyn.
**2011**, 6. [Google Scholar] [CrossRef] - Yavuz, M.; Özdemir, N. A quantitative approach to fractional option pricing problems with decomposition series. Konuralp J. Math.
**2018**, in press. [Google Scholar] - Elbeleze, A.A.; Kılıçman, A.; Taib, B.M. Homotopy perturbation method for fractional Black–Scholes European option pricing equations using sumudu transform. Math. Prob. Eng.
**2013**, 2013, 1–7. [Google Scholar] [CrossRef] - Yavuz, M. Novel solution methods for initial boundary value problems of fractional order with conformable differentiation. Int. J. Opt. Control Theor. Appl.
**2018**, 8, 1–7. [Google Scholar] [CrossRef] - Yavuz, M.; Yaşkıran, B. Approximate-analytical solutions of cable equation using conformable fractional operator. New Trends Math. Sci.
**2017**, 5, 209–219. [Google Scholar] [CrossRef] - Odibat, Z.; Momani, S.; Erturk, V.S. Generalized differential transform method: Application to differential equations of fractional order. App. Math. Comput.
**2008**, 197, 467–477. [Google Scholar] [CrossRef] - Chen, W.; Wang, S. A finite difference method for pricing European and American options under a geometric Lévy process. Management
**2015**, 11, 241–264. [Google Scholar] [CrossRef] - Turut, V.; Güzel, N. On solving partial differential equations of fractional order by using the variational iteration method and multivariate Padé approximations. Eur. J. Pure Appl. Math.
**2013**, 6, 147–171. [Google Scholar] - Eroğlu, B.İ.; Avcı, D.; Özdemir, N. Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol. A.
**2017**, 132, 658–662. [Google Scholar] [CrossRef] - Evirgen, F. Conformable fractional gradient based dynamic system for constrained optimization problem. Acta Phys. Pol. A.
**2017**, 132, 1066–1069. [Google Scholar] [CrossRef] - Hu, Y.; Øksendal, B.; Sulem, A. Optimal consumption and portfolio in a Black–Scholes market driven by fractional Brownian motion. Infin. Dimens. Anal. Quantum Prob. Relat. Top.
**2003**, 6, 519–536. [Google Scholar] [CrossRef] - Özdemir, N.; Agrawal, O.P.; Karadeniz, D.; Iskender, B.B. Analysis of an axis-symmetric fractional diffusion-wave problem. J. Phys. A Math. Theor.
**2009**, 42, 355208. [Google Scholar] [CrossRef] - Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl.
**2015**, 1, 1–13. [Google Scholar] [CrossRef] - Atangana, A.; Alkahtani, B.S.T. New model of groundwater flowing within a confine aquifer: Application of Caputo–Fabrizio derivative. Arab. J. Geosci.
**2016**, 9, 1–8. [Google Scholar] [CrossRef] - Singh, J.; Kumar, D.; Nieto, J.J. Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos Solitons Fractals
**2017**, 99, 109–115. [Google Scholar] [CrossRef] - Singh, J.; Kumar, D.; Nieto, J.J. Application of Caputo–Fabrizio derivatives to mhd free convection flow of generalized Walters’-B fluid model. Eur. Phys. J. Plus
**2016**, 131, 377. [Google Scholar] [CrossRef] - Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Baleanu, D.; Escobar-Jimenez, R.F.; Olivares-Peregrino, V.H. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv. Differ. Equ.
**2016**, 2016, 164. [Google Scholar] [CrossRef] - Sheikh, N.A.; Ali, F.; Saqib, M.; Khan, I.; Jan, S.A.A.; Alshomrani, A.S.; Alghamdi, M.S. Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Res. Phys.
**2017**, 7, 789–800. [Google Scholar] [CrossRef] - Koca, I.; Atangana, A. Solutions of Cattaneo–Hristov model of elastic heat diffusion with Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Therm. Sci.
**2017**, 21, 2299–2305. [Google Scholar] [CrossRef] - Hristov, J. Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo–Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci.
**2017**, 21, 827–839. [Google Scholar] [CrossRef] - Alkahtani, B.S.T.; Atangana, A. Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order. Chaos Solitons Fractals
**2016**, 89, 539–546. [Google Scholar] [CrossRef] - Alkahtani, B.S.T.; Atangana, A. Analysis of non-homogeneous heat model with new trend of derivative with fractional order. Chaos Solitons Fractals
**2016**, 89, 566–571. [Google Scholar] [CrossRef] - Hristov, J. Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo–Fabrizio time-fractional derivative. Therm. Sci.
**2016**, 20, 757–762. [Google Scholar] [CrossRef] - Atangana, A.; Koca, I. On the new fractional derivative and application to nonlinear Baggs and Freedman model. J. Nonlinear Sci. Appl.
**2016**, 9, 2467–2480. [Google Scholar] - Ghandehari, M.A.M.; Ranjbar, M. European option pricing of fractional Black–Scholes model with new Lagrange multipliers. Comput. Methods Differ. Equ.
**2014**, 2, 1–10. [Google Scholar] - Yerlikaya-Özkurt, F.; Vardar-Acar, C.; Yolcu-Okur, Y.; Weber, G.W. Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method. J. Comput. Appl. Math.
**2014**, 259, 843–850. [Google Scholar] [CrossRef] - Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ.
**1973**, 81, 637–654. [Google Scholar] [CrossRef] - Wilmott, P.; Howison, S.; Dewynne, J. The Mathematics of Financial Derivatives: A Student Introduction; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ahmed, E.; Abdusalam, H.A. On modified Black–Scholes equation. Chaos Solitons Fractals
**2004**, 22, 583–587. [Google Scholar] [CrossRef] - Cen, Z.; Le, A. A robust and accurate finite difference method for a generalized Black–Scholes equation. J. Comput. Appl. Math.
**2011**, 235, 3728–3733. [Google Scholar] [CrossRef] - Meng, L.; Wang, M. Comparison of Black–Scholes formula with fractional Black–Scholes formula in the foreign exchange option market with changing volatility. Asia-Pac. Finan Markets
**2010**, 17, 99–111. [Google Scholar] [CrossRef] - Yavuz, M.; Özdemir, N. A different approach to the European option pricing model with new fractional operator. Math. Model. Nat. Phenom.
**2018**, in press. [Google Scholar] [CrossRef] - Madani, M.; Fathizadeh, M.; Khan, Y.; Yildirim, A. On the coupling of the homotopy perturbation method and Laplace transformation. Math. Comput. Model.
**2011**, 53, 1937–1945. [Google Scholar] [CrossRef]

**Figure 1.**The solution function of Equation (2) in the sense of Caputo–Fabrizio (CF) with respect to $\left(\right)open="("\; close=")">\alpha ,\tau \times \left(\right)open="["\; close="]">0,1$

**Figure 3.**Option prices $V\left(\right)open="("\; close=")">S,t$ with respect to underlying asset S for different $\alpha $ values.

**Figure 4.**The solution function of (4) in the CF derivative sense with respect to $\left(\right)open="("\; close=")">\alpha ,\tau \times \left(\right)open="["\; close="]">0,1$

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yavuz, M.; Özdemir, N.
European Vanilla Option Pricing Model of Fractional Order without Singular Kernel. *Fractal Fract.* **2018**, *2*, 3.
https://doi.org/10.3390/fractalfract2010003

**AMA Style**

Yavuz M, Özdemir N.
European Vanilla Option Pricing Model of Fractional Order without Singular Kernel. *Fractal and Fractional*. 2018; 2(1):3.
https://doi.org/10.3390/fractalfract2010003

**Chicago/Turabian Style**

Yavuz, Mehmet, and Necati Özdemir.
2018. "European Vanilla Option Pricing Model of Fractional Order without Singular Kernel" *Fractal and Fractional* 2, no. 1: 3.
https://doi.org/10.3390/fractalfract2010003