Two-Dimensional Discrete Coupled Fractional Fourier Transform (DCFrFT)
Abstract
1. Introduction and Preliminaries
2. Two-Dimensional Discrete Coupled Fractional Fourier Transform (DCFrFT)
Fundamental Properties of the DCFrFT
- 1.
- 2.
- 3.
- 4.
- 1.
- Time inversion:
- 2.
- Periodicity: consequently,
- 3.
- DC property:
- 4.
- Parity property: If is even, then is even, and if is odd, then is odd.
- 5.
- Conjugation property: If y is pure real, then
- 6.
- Parseval’s identity:
3. Examples
4. Convolution Theorem
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Namias, V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Kerr, F. Namias’ fractional Fourier transforms on L2 and applications to differential equations. J. Math. Anal. Appl. 1988, 136, 404–418. [Google Scholar] [CrossRef]
- Kerr, F.; McBride, A. Operational calculus and fractional operators. Proc. Edinb. Math. Soc. 1983, 26, 323–340. [Google Scholar]
- McBride, A.; Kerr, F. On Namias’ fractional Fourier transforms. IMA J. Appl. Math. 1987, 39, 159–175. [Google Scholar] [CrossRef]
- Almeida, L.B. The fractional Fourier transform and time-frequency representation. IEEE Trans. Signal Process. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- Zayed, A. Fractional Integral Transforms: Theory and Applications, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024. [Google Scholar]
- Sahin, A.; Kutay, M.A.; Ozaktas, H.M. Non-separable two-dimensional fractional Fourier transform. Appl. Opt. 1998, 37, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Shain, A.; Ozaktas, H.; Mendlovic, D. Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters. Appl. Opt. 1998, 37, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A. Two-dimensional fractional Fourier transform and some of its properties. Integral Transforms Spec. Funct. 2018, 29, 553–570. [Google Scholar] [CrossRef]
- Zayed, A. A New Perspective on the Two-Dimensional Fractional Fourier Transform and its Relationship with the Wigner Distribution. Fourier Anal. Appl. 2019, 25, 460–487. [Google Scholar] [CrossRef]
- Arıkan, O.; Kutay, M.A.; Ozaktas, H.M.; Akdemir, O.K. The discrete fractional fourier transformation. In Proceedings of the Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96), Paris, France, 18–21 June 1996; pp. 205–207. [Google Scholar]
- Pei, S.C.; Tseng, C.C.; Yeh, M.H. Discrete fractional Hartley and Fourier transform. IEEE Trans. Circuits Syst. II 1998, 45, 665–675. [Google Scholar]
- Pei, S.C.; Yeh, M.H. Improved discrete fractional Fourier transform. Opt. Lett. 1997, 22, 1047–1049. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.C.; Yeh, M.H.; Tseng, C.C. Discrete fractional fourier transform based on orthogonal projection. IEEE Trans. Signal Process. 1999, 47, 1335–1348. [Google Scholar] [CrossRef]
- Pei, S.C.; Yeh, M.H. Two-dimensional discrete fractional Fourier transform. Signal Process. 1998, 67, 99–108. [Google Scholar] [CrossRef]
- Pei, S.C.; Ding, J.J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 2000, 48, 1338–1353. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.C.; Ding, J.J.; Yeh, Y.T. Discrete fractional Fourier transform based on eigen decomposition. IEEE Trans. Signal Process. 2011, 59, 6046–6057. [Google Scholar]
- Kutay, M.A.; Ozaktas, M.A.; Arikan, O. Faster computation of the discrete fractional Fourier transform. Opt. Commun. 2013, 291, 29–34. [Google Scholar]
- Liu, M.; Zhang, Y.; Zhang, T. Sliding 2d discrete fractional Fourier transform. IEEE Signal Process. Lett. 2019, 26, 109–113. [Google Scholar] [CrossRef]
- Bhandari, A.; Zayed, A.I. Convolution and product theorems for the special affine Fourier transform. In Frontiers in Orthogonal Polynomials and q-Series; Nashed, M.Z., Li, X., Eds.; World Scientific: Singapore, 2018; pp. 119–137. [Google Scholar]


| Property | DCFrFT | DFrFT |
|---|---|---|
| Additive property | Not hold | Not hold |
| Inversion formula | ||
| Time inversion | ||
| Periodicity | ||
| DC property | ||
| Parity property | If is even, then is even, | If is even, then is even, |
| if is odd, then is odd | if is odd, then is odd | |
| conjugation property | ||
| Parseval’s identity | ||
| Convolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Elshamy, A.; Mansour, Z.S.I.; Zayed, A. Two-Dimensional Discrete Coupled Fractional Fourier Transform (DCFrFT). Fractal Fract. 2026, 10, 7. https://doi.org/10.3390/fractalfract10010007
Elshamy A, Mansour ZSI, Zayed A. Two-Dimensional Discrete Coupled Fractional Fourier Transform (DCFrFT). Fractal and Fractional. 2026; 10(1):7. https://doi.org/10.3390/fractalfract10010007
Chicago/Turabian StyleElshamy, Asma, Zeinab S. I. Mansour, and Ahmed Zayed. 2026. "Two-Dimensional Discrete Coupled Fractional Fourier Transform (DCFrFT)" Fractal and Fractional 10, no. 1: 7. https://doi.org/10.3390/fractalfract10010007
APA StyleElshamy, A., Mansour, Z. S. I., & Zayed, A. (2026). Two-Dimensional Discrete Coupled Fractional Fourier Transform (DCFrFT). Fractal and Fractional, 10(1), 7. https://doi.org/10.3390/fractalfract10010007

