Data-Driven Forecasting of CO2 Emissions in Thailand’s Transportation Sector Using Nonlinear Autoregressive Neural Networks
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Collection
3.2. Model Development
3.2.1. NAR
3.2.2. NARX
- NARX—VK includes economic variables (population and GDP) and vehicle kilometers (VK) data for motorcycles, passenger vehicles, and trucks. The hyperparameter tuning for this model was performed using grid search within a range of 1 to 10 for key parameters, including input delay, feedback delay, and the number of neurons in the hidden layer. The optimal model configuration, selected by minimizing the Mean Squared Error (MSE), consisted of 10 neurons in the hidden layer, an input delay of 6, and a feedback delay of 5, yielding an MSE of 810,401.020.
- NARX—RG comprises economic variables (population and GDP) and registered vehicle data categorized into small, medium, and large vehicles. Similarly, grid search was utilized to tune the model’s hyperparameters, with the search space set between 1 and 10. The optimal model configuration, determined by minimizing the MSE, featured a hidden layer with 2 neurons, an input delay of 6, and a feedback delay of 2, achieving an MSE of 8,916,623.766.
3.2.3. Type-2 Fuzzy Inference System (T2FIS) with Genetic Algorithm (GA)
3.3. Comparative Analysis Framework
- MAPE ≤ 10%: Indicates high prediction accuracy.
- MAPE > 10% and ≤20%: Indicates good prediction accuracy.
- MAPE > 20% and ≤50%: Indicates reasonable prediction accuracy.
- MAPE > 50%: Indicates inaccurate prediction accuracy.
3.4. Sensitivity Analysis Framework
4. Result and Discussion
4.1. Analysis Comparison
4.2. Sensitivity Analysis
5. Implications and Recommendations
6. Conclusions
7. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaramillo, P.; Kahn Ribeiro, S.; Newman, P.; Dhar, S.; Diemuodeke, O.E.; Kajino, T.; Lee, D.S.; Nugroho, S.B.; Ou, X.; Hammer Strømman, A.; et al. Transport. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Fradera, R., Some, P., Vyas, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- International Energy Agency. Energy Consumption in Transport by Fuel in the Net Zero Scenario, 1975–2030. Available online: https://www.iea.org/data-and-statistics/charts/energy-consumption-in-transport-by-fuel-in-the-net-zero-scenario-1975-2030 (accessed on 25 September 2024).
- International Energy Agency. Tracking Clean Energy Progress 2023: Transport. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 25 September 2024).
- Funsho Idowu, O.; Adedoyin, F.F.; Bekun, F.V.; Balsalobre-Lorente, D. Modeling the environmental implications of car ownership and energy consumption in the UK: Evidence from NARDL model. Int. J. Sustain. Transp. 2022, 16, 1097–1109. [Google Scholar] [CrossRef]
- Praopun, A.; Poon, T. System dynamics model of CO2 emissions from urban transportation in Chiang Mai city. GEOMATE J. 2020, 18, 209–216. [Google Scholar]
- Umer, M.; Abas, N.; Rauf, S.; Saleem, M.S.; Dilshad, S. GHG emissions estimation and assessment of Pakistan’s power sector: A roadmap towards low carbon future. Results Eng. 2024, 22, 102354. [Google Scholar] [CrossRef]
- Energy Policy and Planning Office. CO2 Emission by Sector and Energy Type. Available online: https://www.eppo.go.th/index.php/th/en-energystatistics/co2-statistic (accessed on 25 September 2024).
- Janhuaton, T.; Ratanavaraha, V.; Jomnonkwao, S. Forecasting Thailand’s Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models. Forecasting 2024, 6, 462–484. [Google Scholar] [CrossRef]
- Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation. Transp. Policy 2015, 41, 136–146. [Google Scholar] [CrossRef]
- Salangam, S. Towards a predictor for CO2 emission usingregression analysis and an artificial neural network. J. Ind. Technol. Suan SunandhaRajabhat Univ. 2022, 10, 54–65. [Google Scholar]
- ATO. Transport and Climate Profile: Thailand. Available online: https://asiantransportobservatory.org/documents/219/Thailand-transport-and-climate-policy.pdf (accessed on 31 December 2024).
- ONEP. Long-Term Low Greenhouse Gas Emission Development Strategy; Office of Natural Resources and Environmental Policy and Planning: Bangkok, Thailand, 2022.
- Umoh, U.; Umoeka, I.; Ntekop, M.; Babalola, E. Interval type-2 fuzzy neural networks for short-term electric load forecasting: A comparative study. Int. J. Soft Comput. (IJSC) 2018, 9, 1–20. [Google Scholar] [CrossRef]
- Mai, D.S.; Bui, K.-T.T.; Van Doan, C. Application of Interval Type-2 Fuzzy Logic System and Ant Colony Optimization for Hydropower Dams Displacement Forecasting. Int. J. Fuzzy Syst. 2023, 25, 2052–2066. [Google Scholar] [CrossRef]
- Fatima, S.; Saad, S.; Zia, S.; Hussain, E.; Fraz, T.; Khan, M.S. Forecasting Carbon Dioxide Emission of Asian Countries Using ARIMA and Simple Exponential Smoothing Models. Int. J. Econ. Environ. Geol. 2019, 10, 64–69. [Google Scholar] [CrossRef]
- Rahman, A.; Hasan, M.M. Modeling and forecasting of carbon dioxide emissions in Bangladesh using Autoregressive Integrated Moving Average (ARIMA) models. Open J. Stat. 2017, 7, 560–566. [Google Scholar] [CrossRef]
- Kamoljitprapa, P.; Sookkhee, S. Forecasting models for carbon dioxide emissions in major economic sectors of Thailand. J. Phys. Conf. Ser. 2022, 2346, 012001. [Google Scholar] [CrossRef]
- Kour, M. Modelling and forecasting of carbon-dioxide emissions in South Africa by using ARIMA model. Int. J. Environ. Sci. Technol. 2023, 20, 11267–11274. [Google Scholar] [CrossRef]
- Ning, L.; Pei, L.; Li, F. Forecast of China’s Carbon Emissions Based on ARIMA Method. Discret. Dyn. Nat. Soc. 2021, 2021, 1441942. [Google Scholar] [CrossRef]
- Li, P.; Yang, H.; Wu, H.; Wang, Y.; Su, H.; Zheng, T.; Zhu, F.; Zhang, G.; Han, Y. Deep learning model for solar and wind energy forecasting considering Northwest China as an example. Results Eng. 2024, 24, 102939. [Google Scholar] [CrossRef]
- Kongcharoen, C.; Kruangpradit, T. Autoregressive integrated moving average with explanatory variable (ARIMAX) model for Thailand export. In Proceedings of the 33rd International Symposium on Forecasting, Seoul, Republic of Korea, 23–26 June 2013; pp. 1–8. [Google Scholar]
- Ling, A.; Darmesah, G.; Chong, K.; Ho, C. Application of ARIMAX model to forecast weekly cocoa black pod disease incidence. Math. Stat. 2019, 7, 29–40. [Google Scholar]
- Peter, Ď.; Silvia, P. ARIMA vs. ARIMAX–which approach is better to analyze and forecast macroeconomic time series. In Proceedings of the 30th International Conference Mathematical Methods in Economics, Karviná, Czech Republic, 11–13 September 2012; pp. 136–140. [Google Scholar]
- Sutthichaimethee, P.; Ariyasajjakorn, D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environ. Clim. Technol. 2018, 22, 107–117. [Google Scholar] [CrossRef]
- Ağbulut, Ü. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 29, 141–157. [Google Scholar] [CrossRef]
- Sun, W.; Liu, M. Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China. J. Clean. Prod. 2016, 122, 144–153. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Ao, W.; Bai, Y.; Li, C. Prediction and analysis of CO2 emission in Chongqing for the protection of environment and public health. Int. J. Environ. Res. Public Health 2018, 15, 530. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, M.; Du, W. Prediction on Peak Values of Carbon Dioxide Emissions from the Chinese Transportation Industry Based on the SVR Model and Scenario Analysis. J. Adv. Transp. 2020, 2020, 8848149. [Google Scholar] [CrossRef]
- Faruque, M.O.; Rabby, M.A.J.; Hossain, M.A.; Islam, M.R.; Rashid, M.M.U.; Muyeen, S.M. A comparative analysis to forecast carbon dioxide emissions. Energy Rep. 2022, 8, 8046–8060. [Google Scholar] [CrossRef]
- Ghalandari, M.; Forootan Fard, H.; Komeili Birjandi, A.; Mahariq, I. Energy-related carbon dioxide emission forecasting of four European countries by employing data-driven methods. J. Therm. Anal. Calorim. 2021, 144, 1999–2008. [Google Scholar] [CrossRef]
- Shabri, A. Forecasting the annual carbon dioxide emissions of Malaysia using Lasso-GMDH neural network-based. In Proceedings of the 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 21–22 May 2022; pp. 123–127. [Google Scholar]
- Tawiah, K.; Daniyal, M.; Qureshi, M. Pakistan CO2 Emission Modelling and Forecasting: A Linear and Nonlinear Time Series Approach. J. Environ. Public Health 2023, 2023, 5903362. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Schwarz, P.; Yang, H. Determining China’s CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis. Energy Policy 2019, 128, 752–762. [Google Scholar] [CrossRef]
- Amarpuri, L.; Yadav, N.; Kumar, G.; Agrawal, S. Prediction of CO2 emissions using deep learning hybrid approach: A Case Study in Indian Context. In Proceedings of the 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019; pp. 1–6. [Google Scholar]
- Nyoni, T.; Mutongi, C. Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models. EPRA Int. J. Multidiscip. Res. 2019, 5, 215–224. [Google Scholar]
- Dansawad, N. Forecasting Carbon Dioxide Emissions (CO2) from Industry Sector in Thailand. Rajamangala Univ. Technol. Srivijaya Res. J. 2023, 15, 408–422. [Google Scholar]
- Wen, T.; Liu, Y.; Bai, Y.h.; Liu, H. Modeling and forecasting CO2 emissions in China and its regions using a novel ARIMA-LSTM model. Heliyon 2023, 9, e21241. [Google Scholar] [CrossRef]
- Kumari, S.; Singh, S.K. Machine learning-based time series models for effective CO2 emission prediction in India. Environ. Sci. Pollut. Res. 2023, 30, 116601–116616. [Google Scholar] [CrossRef]
- Emami Javanmard, M.; Tang, Y.; Wang, Z.; Tontiwachwuthikul, P. Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector. Appl. Energy 2023, 338, 120830. [Google Scholar] [CrossRef]
- Ji, T.; Li, K.; Sun, Q.; Duan, Z. Urban transport emission prediction analysis through machine learning and deep learning techniques. Transp. Res. Part D Transp. Environ. 2024, 135, 104389. [Google Scholar] [CrossRef]
- Karseewong, S.; Boonlha, K. Prediction of carbon dioxide emission from energy consumption in Thailand with SARIMA-ANN-REG model. Srinakharinwirot Univ. J. Sci. Technol. 2024, 16, 251667. [Google Scholar]
- Junsiri, C.; Sutthichaimethee, P.; Phong-a-ran, N. Modeling CO2 Emission Forecasting in Energy Consumption of the Industrial Building Sector under Sustainability Policy in Thailand: Enhancing the LISREL-LGM Model. Forecasting 2024, 6, 485–501. [Google Scholar] [CrossRef]
- Wagner, C.; Hagras, H. Uncertainty and Type-2 Fuzzy Sets and Systems. In Proceedings of the 2010 UK Workshop on Computational Intelligence (UKCI), Colchester, UK, 8–10 September 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Paul, S. Chatter Mitigation in Milling Process Using Discrete Time Sliding Mode Control with Type 2-Fuzzy Logic System. Appl. Sci. 2019, 9, 4380. [Google Scholar] [CrossRef]
- Aladi, J.H.; Wagner, C.; Garibaldi, J.M. Type-1 or interval type-2 fuzzy logic systems—On the relationship of the amount of uncertainty and FOU size. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; pp. 2360–2367. [Google Scholar]
- Kotu, V.; Deshpande, B. Chapter 12—Time Series Forecasting. In Data Science, 2nd ed.; Kotu, V., Deshpande, B., Eds.; Morgan Kaufmann: Cambridge, MA, USA, 2019; pp. 395–445. [Google Scholar]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł. ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise. Energies 2021, 14, 7952. [Google Scholar] [CrossRef]
- Benrhmach, G.; Namir, K.; Namir, A.; Bouyaghroumni, J. Nonlinear Autoregressive Neural Network and Extended Kalman Filters for Prediction of Financial Time Series. J. Appl. Math. 2020, 2020, 5057801. [Google Scholar] [CrossRef]
- Tealab, A.; Hefny, H.; Badr, A. Forecasting of nonlinear time series using ANN. Future Comput. Inform. J. 2017, 2, 39–47. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, R.; Dai, F.; Ye, Y. Traffic Flow Prediction Method Based on Seasonal Characteristics and SARIMA-NAR Model. Appl. Sci. 2022, 12, 2190. [Google Scholar] [CrossRef]
- Chen, S.; Billings, S.A. Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control 1992, 56, 319–346. [Google Scholar] [CrossRef]
- Ljung, L. System Identification: Theory for the User; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Khan, N.A.; Sulaiman, M.; Tavera Romero, C.A.; Alarfaj, F.K. Theoretical Analysis on Absorption of Carbon Dioxide (CO2) into Solutions of Phenyl Glycidyl Ether (PGE) Using Nonlinear Autoregressive Exogenous Neural Networks. Molecules 2021, 26, 6041. [Google Scholar] [CrossRef]
- Mohebbi, M.R.; Karimi Jashni, A.; Dehghani, M.; Hadad, K. Short-Term prediction of carbon monoxide concentration using artificial neural network (NARX) without traffic data: Case study: Shiraz City. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 533–540. [Google Scholar] [CrossRef]
- Chao, F.; Zhou, D.; Lin, C.M.; Yang, L.; Zhou, C.; Shang, C. Type-2 Fuzzy Hybrid Controller Network for Robotic Systems. IEEE Trans. Cybern. 2020, 50, 3778–3792. [Google Scholar] [CrossRef] [PubMed]
- MathWorks. Type-2 Fuzzy Inference Systems. Available online: https://www.mathworks.com/help/fuzzy/type-2-fuzzy-inference-systems.html (accessed on 31 December 2024).
- Bakay, M.S.; Ağbulut, Ü. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms. J. Clean. Prod. 2021, 285, 125324. [Google Scholar] [CrossRef]
- Emang, D.; Shitan, M.; Abd Ghani, A.N.; Noor, K.M. Forecasting with univariate time series models: A case of export demand for peninsular Malaysia’s moulding and chipboard. J. Sustain. Dev. 2010, 3, 157. [Google Scholar] [CrossRef]
- Barfod, M.B. Supporting Sustainable Transport Appraisals Using Stakeholder Involvement and McDa. Transport 2018, 33, 1052–1066. [Google Scholar] [CrossRef]
- Szymańska, E.; Panfiluk, E.; Kiryluk, H. Innovative Solutions for the Development of Sustainable Transport and Improvement of the Tourist Accessibility of Peripheral Areas: The Case of the Białowieża Forest Region. Sustainability 2021, 13, 2381. [Google Scholar] [CrossRef]
- Schmale, J.; Schneidemesser, E.v.; Dörrie, A. An Integrated Assessment Method for Sustainable Transport System Planning in a Middle Sized German City. Sustainability 2015, 7, 1329–1354. [Google Scholar] [CrossRef]
- Conticelli, E.; Gobbi, G.; Rosas, P.I.S.; Tondelli, S. Assessing the Performance of Modal Interchange for Ensuring Seamless and Sustainable Mobility in European Cities. Sustainability 2021, 13, 1001. [Google Scholar] [CrossRef]
- Etukudoh, E.A. A Review of Sustainable Transportation Solutions: Innovations, Challenges, and Future Directions. World J. Adv. Res. Rev. 2024, 21, 1440–1452. [Google Scholar] [CrossRef]
- Grant-Muller, S.; Usher, M.D. Intelligent Transport Systems: The Propensity for Environmental and Economic Benefits. Technol. Forecast. Soc. Change 2014, 82, 149–166. [Google Scholar] [CrossRef]
- Yu, A.; Wei, Y.; Chen, W.; Peng, N.; Peng, L. Life cycle environmental impacts and carbon emissions: A case study of electric and gasoline vehicles in China. Transp. Res. Part D Transp. Environ. 2018, 65, 409–420. [Google Scholar] [CrossRef]
- López, E.; Monzon, A.; Pfaffenbichler, P. Assessment of Energy Efficiency and Sustainability Scenarios in the Transport System. Eur. Transp. Res. Rev. 2011, 4, 47–56. [Google Scholar] [CrossRef]
- Deweerdt, T.; Fabre, A. The Role of Land Use Planning in Urban Transport to Mitigate Climate Change: A Literature Review. Adv. Environ. Eng. Res. 2022, 3, 033. [Google Scholar] [CrossRef]
- Christian, D.A.; Bachtiar, A.; Candi, C. Analysis of Health-Based Transportation System for Health Transformation in DKI Jakarta. J. Soc. Res. 2023, 2, 4103–4112. [Google Scholar] [CrossRef]
- Mavļutova, I.; Atstāja, D.; Grasis, J.; Kuzmina, J.; Uvarova, I.; Roga, D. Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review. Energies 2023, 16, 3585. [Google Scholar] [CrossRef]
- Lopez-Carreiro, I.; Monzon, A.; Lopez, E. MaaS Implications in the Smart City: A Multi-Stakeholder Approach. Sustainability 2023, 15, 832. [Google Scholar] [CrossRef]
- Bajestani, N.S.; Kamyad, A.V.; Esfahani, E.N.; Zare, A. Nephropathy forecasting in diabetic patients using a GA-based type-2 fuzzy regression model. Biocybern. Biomed. Eng. 2017, 37, 281–289. [Google Scholar] [CrossRef]
Author(s) | Year | Country | Variables Considered | Methodology | Scetor | Period | Time Step |
---|---|---|---|---|---|---|---|
Amarpuri et al. [34] | 2019 | India | Historical emission record | CNN-LSTM | All | 1960–2017 | 2018–2020 |
Nyoni and Mutongi [35] | 2019 | China | Historical emission record | ARIMA | All | 1960–2014 | 2015–2024 |
Dansawad [36] | 2021 | Thailand | Historical emission record from the industrial sector in Thailand | Moving Average, Trend Analysis, Single/Double/Triple Exponential Smoothing, Decomposition | Industrial | 2017–2020 | 3 months |
Wen et al. [37] | 2023 | China | Population size, Urbanization rate, Consumption level, Primary industry, Secondary industry, Tertiary industry, Total import and export value, Energy consumption structure, Road mileage, Railway mileage, Passenger, Freight, Energy intensity, Tech progress | ARIMA, LSTM, ARIMA-LSTM | All | 1997–2017 | 2018–2025 |
Kumari and Singh [38] | 2023 | India | Historical emission record | ARIMA, SARIMAX, Holt–Winters, Random forest, Linear Regression, LSTM | All | 1980–2019 | 2020–2030 |
Emami Javanmard et al. [39] | 2023 | GDP, Population, Number of Passengers, Load Volume in Rail Transport, Energy Types (Oil, Gas, Electricity, Renewable) | AR, ARIMA, ARFIMA, SARIMA, GARCH, SVR, Grey Model, MIDAS, WOA | Transportation | 1990–2019 | 2020–2048 | |
Ji et al. [40] | 2024 | China | Population, Vehicle kilometers, GDP per capita, and Annual increase (Year) | ANN, SVM, Deep Learning | Transportation | 2009–2022 | 2025–2050 |
Karseewong and Boonlha [41] | 2024 | Thailand | Historical emission record | SARIMA-ANN-REG | Energy | 2022–2023 | 5 months |
Junsiri et al. [42] | 2024 | Thailand | GDP, Urbanization rate, Industrial structure, net exports, Indirect foreign investment, Foreign tourists, Industrial building rate, Employment, Health and illness, Social security, Consumer protection, Energy Consumption, Energy intensity | LISREL-LGM | Industrial | 1990–2023 | 2024–2033 |
Janhuaton, Ratanavaraha and Jomnonkwao [8] | 2024 | Thailand | GDP, population, vehicle kilometer | ANN, SVR, ARIMAX | Transportation | 1993–2022 | 2023–2037 |
Model | Evaluation Metric | ||
---|---|---|---|
MAE (103 Tons) | RSME (103 Tons) | MAPE (%) | |
NAR | 5500.069 | 6339.937 | 7.2 |
NARX—RG | 2636.467 | 3833.286 | 3.7 |
NARX—VK | 1621.449 | 1853.799 | 2.2 |
GA-T2FIS | 1962.723 | 2442.957 | 2.6 |
Variable | Parameter | MAPE | |
---|---|---|---|
Feedback Delay | Hidden Layer Size | ||
VK—passenger | 8 | 10 | 4.6% |
VK—freight | 4 | 1 | 2.5% |
VK—motorcycle | 7 | 1 | 2.5% |
GDP | 7 | 5 | 3.2% |
Population | 5 | 4 | 0.1% |
Scenario | Change Rate (%) | Peak Value (103 Tons) | Change in the Peak Value (%) | Total CO2 Emission from 2023 to 2030 | Change in Total Volume (%) |
---|---|---|---|---|---|
Baseline | 0 | 80,529.515 | - | 589,619.215 | - |
Green Transition | −10 | 76,967.345 | −4.4% | 565,217.995 | −4.1% |
High Growth | 10 | 86,363.707 | 7.2% | 613,683.051 | 4.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janhuaton, T.; Nanthawong, S.; Wisutwattanasak, P.; Banyong, C.; Se, C.; Champahom, T.; Ratanavaraha, V.; Jomnonkwao, S. Data-Driven Forecasting of CO2 Emissions in Thailand’s Transportation Sector Using Nonlinear Autoregressive Neural Networks. Big Data Cogn. Comput. 2025, 9, 71. https://doi.org/10.3390/bdcc9030071
Janhuaton T, Nanthawong S, Wisutwattanasak P, Banyong C, Se C, Champahom T, Ratanavaraha V, Jomnonkwao S. Data-Driven Forecasting of CO2 Emissions in Thailand’s Transportation Sector Using Nonlinear Autoregressive Neural Networks. Big Data and Cognitive Computing. 2025; 9(3):71. https://doi.org/10.3390/bdcc9030071
Chicago/Turabian StyleJanhuaton, Thananya, Supanida Nanthawong, Panuwat Wisutwattanasak, Chinnakrit Banyong, Chamroeun Se, Thanapong Champahom, Vatanavongs Ratanavaraha, and Sajjakaj Jomnonkwao. 2025. "Data-Driven Forecasting of CO2 Emissions in Thailand’s Transportation Sector Using Nonlinear Autoregressive Neural Networks" Big Data and Cognitive Computing 9, no. 3: 71. https://doi.org/10.3390/bdcc9030071
APA StyleJanhuaton, T., Nanthawong, S., Wisutwattanasak, P., Banyong, C., Se, C., Champahom, T., Ratanavaraha, V., & Jomnonkwao, S. (2025). Data-Driven Forecasting of CO2 Emissions in Thailand’s Transportation Sector Using Nonlinear Autoregressive Neural Networks. Big Data and Cognitive Computing, 9(3), 71. https://doi.org/10.3390/bdcc9030071