Construction of a Person–Job Temporal Knowledge Graph Using Large Language Models
Abstract
1. Introduction
2. Related Work
2.1. In-Depth Individual Analysis Based on Competency Models
2.2. Group Relationship Mining Based on Social Network Analysis
2.3. Data Structuring Methods Based on Knowledge Graphs and Large Language Models
3. Methodology
3.1. LLM-Based Information Processing and Summarization
3.2. LLM-Based Entity and Relation Extraction with Self-Verifying Formatted Output
3.3. Multi-Granularity Temporal Information Extraction
3.4. Entity Alignment
4. Experiments
4.1. Dataset Description
4.2. Experimental Design
4.3. Experimental Results and Comparison
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angrave, D.; Charlwood, A.; Kirkpatrick, I.; Lawrence, M.; Stuart, M. HR and Analytics: Why HR Is Set to Fail the Big Data Challenge. Hum. Resour. Manag. J. 2016, 26, 1–11. [Google Scholar] [CrossRef]
- Tonidandel, S.; King, E.B.; Cortina, J.M. Big Data at Work: The Data Science Revolution and Organizational Psychology; Routledge: Oxfordshire, UK, 2015. [Google Scholar]
- Harford, T. Big Data: A Big Mistake? Significance 2014, 11, 14–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Zhang, L.; Yang, M. Big Data and Human Resource Management Research: An Integrative Review and New Directions for Future Research. J. Bus. Res. 2021, 133, 34–50. [Google Scholar] [CrossRef]
- Fitzpatrick, R. Competence at Work: Models for Superior Performance. Pers. Psychol. 1994, 47, 448. [Google Scholar]
- Coleman, J.S. Social Capital in the Creation of Human Capital. Am. J. Sociol. 1988, 94, S95–S120. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Y.; Yi, Z.; Jiang, Y. Professional Competence Management for University Students Based on Knowledge Graph Technology. In Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 331–335. [Google Scholar]
- Marler, J.H.; Boudreau, J.W. An Evidence-Based Review of HR Analytics. Int. J. Hum. Resour. Manag. 2017, 28, 3–26. [Google Scholar] [CrossRef]
- Granovetter, M. Economic Action and Social Structure: The Problem of Embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Hoang, H.; Antoncic, B. Network-Based Research in Entrepreneurship: A Critical Review. J. Bus. Ventur. 2003, 18, 165–187. [Google Scholar] [CrossRef]
- Ritter, T.; Gemünden, H.G. Network Competence: Its Impact on Innovation Success and Its Antecedents. J. Bus. Res. 2003, 56, 745–755. [Google Scholar] [CrossRef]
- Pfeffer, J.; Salancik, G. External Control of Organizations—Resource Dependence Perspective. In Organizational Behavior 2; Routledge: Oxfordshire, UK, 2015; pp. 355–370. [Google Scholar]
- Capital, I.Y.H. Optimize Your Greatest Asset—Your People; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ashok, D.; Lipton, Z.C. PromptNER: Prompting For Named Entity Recognition. arXiv 2023, arXiv:2305.15444. [Google Scholar] [CrossRef]
- Zheng, Y.; Ke, W.; Liu, Q.; Yang, Y.; Zhao, R.; Feng, D.; Zhang, J.; Fang, Z. Making LLMs as Fine-Grained Relation Extraction Data Augmentor. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24, Jeju, Republic of Korea, 3–9 August 2024; International Joint Conferences on Artificial Intelligence Organization: Bremen, Germany, 2024; pp. 6660–6668. [Google Scholar]
- Wu, H. Empirical Study on Temporal Expression Extraction via Large Language Model. In Proceedings of the Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024), Wuhan, China, 22–24 March 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13210, pp. 670–677. [Google Scholar]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795. [Google Scholar]
- Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. arXiv 2019, arXiv:1902.10197. [Google Scholar] [CrossRef]
- Kethavarapu, U.P.K.; Saraswathi, S. Concept Based Dynamic Ontology Creation for Job Recommendation System. Procedia Comput. Sci. 2016, 85, 915–921. [Google Scholar] [CrossRef]
- Gugnani, A.; Kasireddy, V.K.R.; Ponnalagu, K. Generating Unified Candidate Skill Graph for Career Path Recommendation. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 328–333. [Google Scholar]
- Comanici, G.; Bieber, E.; Schaekermann, M.; Pasupat, I.; Sachdeva, N.; Dhillon, I.; Blistein, M.; Ram, O.; Zhang, D.; Rosen, E.; et al. Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities. arXiv 2025, arXiv:2507.06261. [Google Scholar] [CrossRef]
- DeepSeek-AI; Liu, A.; Feng, B.; Wang, B.; Wang, B.; Liu, B.; Zhao, C.; Dengr, C.; Ruan, C.; Dai, D.; et al. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model. arXiv 2024, arXiv:2405.04434. [Google Scholar] [CrossRef]
- Hello GPT-4o|OpenAI. Available online: https://openai.com/index/hello-gpt-4o/ (accessed on 2 August 2025).
- Moonshot AI—Kimi API. Available online: https://platform.moonshot.cn/ (accessed on 2 August 2025).






| Type | P | R | F1 |
|---|---|---|---|
| Entity | 0.9133 | 0.8932 | 0.9032 |
| Relation | 0.9153 | 0.8953 | 0.9052 |
| Time | 0.9815 | 0.9938 | 0.9876 |
| Category | P | R | F1 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Entity | Rela | Time | Entity | Rela | Time | Entity | Rela | Time | |
| ① | 0.893 | 0.896 | 0.960 | 0.876 | 0.880 | 0.972 | 0.885 | 0.888 | 0.966 |
| ② | 0.893 | 0.897 | 0.960 | 0.866 | 0.870 | 0.972 | 0.880 | 0.883 | 0.966 |
| ③ | 0.893 | 0.897 | 0.960 | 0.866 | 0.870 | 0.972 | 0.880 | 0.883 | 0.966 |
| ④ | 0.950 | 0.829 | 0.542 | 0.583 | 0.508 | 0.406 | 0.723 | 0.630 | 0.464 |
| ⑤ | 0.913 | 0.915 | 0.981 | 0.893 | 0.895 | 0.994 | 0.903 | 0.905 | 0.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, J.; Li, B.; Lin, X.; Liu, M. Construction of a Person–Job Temporal Knowledge Graph Using Large Language Models. Big Data Cogn. Comput. 2025, 9, 287. https://doi.org/10.3390/bdcc9110287
Zhang Z, Wang J, Li B, Lin X, Liu M. Construction of a Person–Job Temporal Knowledge Graph Using Large Language Models. Big Data and Cognitive Computing. 2025; 9(11):287. https://doi.org/10.3390/bdcc9110287
Chicago/Turabian StyleZhang, Zhongshan, Junzhi Wang, Bo Li, Xiang Lin, and Mingyu Liu. 2025. "Construction of a Person–Job Temporal Knowledge Graph Using Large Language Models" Big Data and Cognitive Computing 9, no. 11: 287. https://doi.org/10.3390/bdcc9110287
APA StyleZhang, Z., Wang, J., Li, B., Lin, X., & Liu, M. (2025). Construction of a Person–Job Temporal Knowledge Graph Using Large Language Models. Big Data and Cognitive Computing, 9(11), 287. https://doi.org/10.3390/bdcc9110287

