Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing
Abstract
:1. Introduction
2. Related Work
3. Applications and Tools for Generative Artificial Intelligence in Additive Manufacturing
3.1. Conversational AI Used to Generate Additive Manufacturing Knowledge
3.1.1. General Aspects of Conversational AI
3.1.2. Technical Background of Conversational AI
3.1.3. Existing Conversational AI Tools
3.1.4. Relevance of Conversational AI in Additive Manufacturing
3.2. Text-to-Image Algorithms to Generate Additive Manufacturing Design Approaches
3.2.1. General Aspects of Text-to-Image Algorithms
3.2.2. Technical Background of Text-to-Image Algorithms
3.2.3. Existing Tools with Text-to-Image Algorithms
3.2.4. Relevance of Text-to-Image Algorithms for Additive Manufacturing
3.3. Text-to-3D Synthesis to Generate 3D Models Suitable for Additive Manufacturing
3.3.1. General Aspects of Text-to-3D Algorithms
3.3.2. Technical Background of Text-to-3D Algorithms
3.3.3. Existing Tools with Text-to-3D Algorithms
3.3.4. Relevance of Text-to-3D Algorithms in Additive Manufacturing
4. Implementations of Generative Artificial Intelligence in Additive Manufacturing
4.1. AI-Powered Conversational Chatbots as Additive Manufacturing Assistants
4.2. Generation of Design Templates for Additively Manufactured Objects Using Midjourney
4.3. Generation of a 3D Part Model for Additive Manufacturing Using Shap-E
5. Discussion and Future Perspectives
5.1. General Aspects of Generative Artificial Intelligence
5.2. Aspects of Generative Artificial Intelligence in the Context of Additive Manufacturing
5.2.1. Chatbots in the Additive Manufacturing Process Chain
5.2.2. Additive Manufacturing Designs from Text Generation Algorithms
5.2.3. Future Developments for Chatbots and Text Generation Algorithms in Additive Manufacturing
6. Conclusions
- GAI is a useful support for various AM processes;
- GAI can help speed up or even replace AM processes;
- GAI increases creativity in AM design;
- GAI can be used to digitally collect, analyse and profitably evaluate information and expertise.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tofail, S.A.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer International Publishing: Cham, Switzerland, 2021; ISBN 9783030561260. [Google Scholar]
- Kietzmann, J.; Pitt, L.; Berthon, P. Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing. Bus. Horiz. 2015, 58, 209–215. [Google Scholar] [CrossRef]
- Liu, V.; Vermeulen, J.; Fitzmaurice, G.; Matejka, J. 3DALL-E: Integrating Text-to-Image AI in 3D Design Workflows. 2022. Available online: https://arxiv.org/pdf/2210.11603 (accessed on 21 June 2023).
- Lin, C.-H.; Gao, J.; Tang, L.; Takikawa, T.; Zeng, X.; Huang, X.; Kreis, K.; Fidler, S.; Liu, M.-Y.; Lin, T.-Y. Magic3D: High-Resolution Text-to-3D Content Creation. arXiv 2022, arXiv:2211.10440. [Google Scholar]
- Li, C.; Zhang, C.; Waghwase, A.; Lee, L.-H.; Rameau, F.; Yang, Y.; Bae, S.-H.; Hong, C.S. Generative AI Meets 3D: A Survey on Text-to-3D in AIGC Era. 2023. Available online: https://arxiv.org/pdf/2305.06131 (accessed on 21 June 2023).
- Baidoo-Anu, D.; Owusu Ansah, L. Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. J. AI 2023, 7, 52–62. [Google Scholar] [CrossRef]
- Banh, L.; Strobel, G. Generative artificial intelligence. Electron. Mark. 2023, 33, 63. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. 2017. Available online: http://arxiv.org/pdf/1706.03762 (accessed on 28 June 2024).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA; London, UK, 2016; ISBN 0262337371. [Google Scholar]
- Corchado, J.M.; López, F.S.; Núñez, V.J.M.; Garcia, S.R.; Chamoso, P. Generative Artificial Intelligence: Fundamentals. ADCAIJ 2023, 12, e31704. [Google Scholar] [CrossRef]
- Yuan, C.; Moghaddam, M. Attribute-Aware Generative Design with Generative Adversarial Networks. IEEE Access 2020, 8, 190710–190721. [Google Scholar] [CrossRef]
- Oh, S.; Jung, Y.; Kim, S.; Lee, I.; Kang, N. Deep Generative Design: Integration of Topology Optimization and Generative Models. J. Mech. Des. 2019, 141, 111405. [Google Scholar] [CrossRef]
- Ali, S.; Parikh, D. Telling Creative Stories Using Generative Visual Aids. 2021. Available online: https://arxiv.org/pdf/2110.14810 (accessed on 21 June 2023).
- Wang, W.; Lin, X.; Feng, F.; He, X.; Chua, T.-S. Generative Recommendation: Towards Next-Generation Recommender Paradigm. 2023. Available online: https://arxiv.org/pdf/2304.03516 (accessed on 21 June 2023).
- Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. 2023. Available online: https://arxiv.org/pdf/2303.04226 (accessed on 21 June 2023).
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022, 28, 87–100. [Google Scholar] [CrossRef]
- Badini, S.; Regondi, S.; Frontoni, E.; Pugliese, R. Assessing the capabilities of ChatGPT to improve additive manufacturing troubleshooting. Adv. Ind. Eng. Polym. Res. 2023, 6, 278–287. [Google Scholar] [CrossRef]
- Jasche, F.; Weber, P.; Liu, S.; Ludwig, T. PrintAssist—A conversational human-machine interface for 3D printers. i-com 2023, 22, 3–17. [Google Scholar] [CrossRef]
- Ballagas, R.; Wei, J.; Vankipuram, M.; Li, Z.; Spies, K.; Horii, H. Exploring Pervasive Making Using Generative Modeling and Speech Input. IEEE Pervasive Comput. 2019, 18, 20–28. [Google Scholar] [CrossRef]
- Hyunjin, C. A Study on the Change of Manufacturing Design Process due to the Development of A.I Design and 3D Printing. IOP Conf. Ser. Mater. Sci. Eng. 2020, 727, 12010. [Google Scholar] [CrossRef]
- Jaruga-Rozdolska, A. Artificial intelligence as part of future practices in the architect’s work: MidJourney generative tool as part of a process of creating an architectural form. Architectus 2022, 3, 95–104. [Google Scholar] [CrossRef]
- Gozalo-Brizuela, R.; Garrido-Merchán, E.C. A Survey of Generative AI Applications. 2023. Available online: https://arxiv.org/pdf/2306.02781 (accessed on 29 June 2023).
- Saka, A.B.; Oyedele, L.O.; Akanbi, L.A.; Ganiyu, S.A.; Chan, D.W.; Bello, S.A. Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities. Adv. Eng. Inform. 2023, 55, 101869. [Google Scholar] [CrossRef]
- Kulkarni, P.; Mahabaleshwarkar, A.; Kulkarni, M.; Sirsikar, N.; Gadgil, K. Conversational AI: An Overview of Methodologies, Applications & Future Scope. In Proceedings of the 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 19–21 September 2019; pp. 1–7. [Google Scholar]
- Chowdhary, K.R. Natural Language Processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020; pp. 603–649. [Google Scholar]
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A Survey of Large Language Models. 2023. Available online: https://arxiv.org/pdf/2303.18223 (accessed on 4 July 2023).
- Carlini, N.; Tramèr, F.; Wallace, E.; Jagielski, M.; Herbert-Voss, A.; Lee, K.; Roberts, A.; Brown, T.; Song, D.; Erlingsson, Ú.; et al. Extracting Training Data from Large Language Models. In 30th USENIX Security Symposium (USENIX Security 21); USENIX Association: Berkeley, CA, USA, 2021; pp. 2633–2650. ISBN 978-1-939133-24-3. [Google Scholar]
- Joublin, F.; Ceravola, A.; Deigmoeller, J.; Gienger, M.; Franzius, M.; Eggert, J. A Glimpse in ChatGPT Capabilities and Its Impact for AI Research. 2023. Available online: https://arxiv.org/pdf/2305.06087 (accessed on 10 July 2023).
- Tian, H.; Lu, W.; Li, T.O.; Tang, X.; Cheung, S.-C.; Klein, J.; Bissyandé, T.F. Is ChatGPT the Ultimate Programming Assistant—How Far Is It? 2023. Available online: https://arxiv.org/pdf/2304.11938 (accessed on 10 July 2023).
- Bahrini, A.; Khamoshifar, M.; Abbasimehr, H.; Riggs, R.J.; Esmaeili, M.; Majdabadkohne, R.M.; Pasehvar, M. ChatGPT: Applications, Opportunities, and Threats. 2023. Available online: https://arxiv.org/pdf/2304.09103 (accessed on 4 July 2023).
- Rudolph, J.; Tan, S.; Tan, S. War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. J. Appl. Learn. Teach. 2023, 6, 364–389. [Google Scholar] [CrossRef]
- Authentise Inc. Authentise brings ChatGPT Capabilities to Additive Manufacturing. Available online: https://www.authentise.com/post/authentise-brings-chatgpt-capabilities-to-additive-manufacturing (accessed on 10 July 2023).
- Ai Build Limited. Talk to AiSync. Available online: https://ai-build.com/ (accessed on 10 July 2023).
- Brisco, R.; Hay, L.; Dhami, S. Exploring the role of text-to-image ai in concept generation. Proc. Des. Soc. 2023, 3, 1835–1844. [Google Scholar] [CrossRef]
- Li, B.; Qi, X.; Lukasiewicz, T.; Torr, P. Controllable Text-to-Image Generation. In Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2019. [Google Scholar]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2022; ISBN 9783030343729. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. 2014. Available online: https://arxiv.org/pdf/1406.2661 (accessed on 11 July 2023).
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. 2020. Available online: https://arxiv.org/pdf/2006.11239 (accessed on 11 July 2023).
- Oppenlaender, J. The Creativity of Text-to-Image Generation. In Proceedings of the 25th International Academic Mindtrek Conference, Tampere, Finland, 16–18 November 2022; pp. 192–202. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Tamir, T.S.; Shen, Z.; Liu, S.; Hu, B.; Xiong, G. An Efficient Product-Customization Framework Based on Multimodal Data under the Social Manufacturing Paradigm. Machines 2023, 11, 170. [Google Scholar] [CrossRef]
- Poole, B.; Jain, A.; Barron, J.T.; Mildenhall, B. DreamFusion: Text-to-3D Using 2D Diffusion. 2022. Available online: https://arxiv.org/pdf/2209.14988 (accessed on 12 July 2023).
- Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef]
- Jun, H.; Nichol, A. Shap-E: Generating Conditional 3D Implicit Functions. 2023. Available online: https://arxiv.org/pdf/2305.02463 (accessed on 17 July 2023).
- Khalid, N.M.; Xie, T.; Belilovsky, E.; Popa, T. CLIP-Mesh: Generating Textured Meshes from Text Using Pretrained Image-Text Models; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–8. [Google Scholar]
- Jain, A.; Mildenhall, B.; Barron, J.T.; Abbeel, P.; Poole, B. Zero-Shot Text-Guided Object Generation with Dream Fields. 2021. Available online: https://arxiv.org/pdf/2112.01455 (accessed on 17 July 2023).
- Gao, J.; Shen, T.; Wang, Z.; Chen, W.; Yin, K.; Li, D.; Litany, O.; Gojcic, Z.; Fidler, S. GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images. 2022. Available online: https://arxiv.org/pdf/2209.11163 (accessed on 17 July 2023).
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 208760. [Google Scholar] [CrossRef]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Awasthi, P.; Banerjee, S.S. Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities. Addit. Manuf. 2021, 46, 102177. [Google Scholar] [CrossRef]
- Ultimaker, B.V. Ultimaker S3 and Ultimaker S5: Installation and User Manual; Ultimaker: Geldermalsen, The Netherlands, 2020. [Google Scholar]
- Sætra, H.S. Generative AI: Here to stay, but for good? Technol. Soc. 2023, 75, 102372. [Google Scholar] [CrossRef]
Chatbots | Text Generation Algorithms |
---|---|
|
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westphal, E.; Seitz, H. Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing. Big Data Cogn. Comput. 2024, 8, 74. https://doi.org/10.3390/bdcc8070074
Westphal E, Seitz H. Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing. Big Data and Cognitive Computing. 2024; 8(7):74. https://doi.org/10.3390/bdcc8070074
Chicago/Turabian StyleWestphal, Erik, and Hermann Seitz. 2024. "Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing" Big Data and Cognitive Computing 8, no. 7: 74. https://doi.org/10.3390/bdcc8070074
APA StyleWestphal, E., & Seitz, H. (2024). Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing. Big Data and Cognitive Computing, 8(7), 74. https://doi.org/10.3390/bdcc8070074