EMG Pattern Recognition in the Era of Big Data and Deep Learning
Abstract
:1. Introduction
2. Big EMG Data
2.1. Multiple Datasets
2.2. Benchmark Datasets
2.3. High-Density Surface EMG
2.4. Multiple Modalities
Emotion Recognition
2.5. Discussion
3. Techniques for Big EMG Data
3.1. Feature Engineering
3.2. Feature Learning
3.2.1. Unsupervised Pre-Trained Networks (UPNs)
3.2.2. Convolutional Neural Network (CNN)
3.2.3. Recurrent Neural Network (RNN)
3.3. Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Scheme, E.; Englehart, K. Electromyogram Pattern Recognition for Control of Powered Upper-limb Prostheses: State of the Art and Challenges for Clinical Use. J. Rehabilit. Res. Dev. 2011, 48, 643–660. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. A Review of Control Methods for Electric Power Wheelchairs Based on Electromyography Signals with Special Emphasis on Pattern Recognition. IETE Tech. Rev. 2011, 28, 316–326. [Google Scholar] [CrossRef]
- Saponas, T.S.; Tan, D.S.; Morris, D.; Balakrishnan, R.; Turner, J.; Landay, J.A. Enabling Always-Available Input with Muscle-Computer Interfaces. In Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, Victoria, BC, Canada, 4–7 October 2009; ACM: New York, NY, USA, 2009; pp. 167–176. [Google Scholar] [CrossRef]
- Yousefi, J.; Hamilton-Wright, A. Characterizing EMG Data Using Machine-Learning Tools. Comput. Biol. Med. 2014, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Puthusserypady, S. Nonlinear Analysis of EMG Signals—A Chaotic Approach. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 1, pp. 608–611. [Google Scholar] [CrossRef]
- Scheme, E.; Englehart, K. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition–Based Myoelectric Control. JPO J. Prosthet. Orthot. 2013, 25, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. EMG Feature Evaluation for Improving Myoelectric Pattern Recognition Robustness. Expert Syst. Appl. 2013, 40, 4832–4840. [Google Scholar] [CrossRef]
- Tkach, D.; Huang, H.; Kuiken, T.A. Study of Stability of Time-Domain Features for Electromyographic Pattern Recognition. J. NeuroEng. Rehabilit. 2010, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. A Feasibility Study on the Use of Anthropometric Variables to Make Muscle–Computer Interface More Practical. Eng. Appl. Artif. Intell. 2013, 26, 1681–1688. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Al-Timemy, A.; Kodagoda, S.; Nazarpour, K. Combined Influence of Forearm Orientation and Muscular Contraction on EMG Pattern Recognition. Expert Syst. Appl. 2016, 61, 154–161. [Google Scholar] [CrossRef]
- Côté-Allard, U.; Fall, C.L.; Drouin, A.; Campeau-Lecours, A.; Gosselin, C.; Glette, K.; Laviolette, F.; Gosselin, B. Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning. arXiv, 2018; arXiv:1801.07756. [Google Scholar]
- Georgi, M.; Amma, C.; Schultz, T. Recognizing Hand and Finger Gestures with IMU Based Motion and EMG Based Muscle Activity Sensing. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2015), Lisbon, Portugal, 12–15 January 2015; SCITEPRESS—Science and Technology Publications, Lda: Setúbal, Portugal, 2015; Volume 4, pp. 99–108. [Google Scholar] [CrossRef]
- Atzori, M.; Gijsberts, A.; Heynen, S.; Hager, A.G.M.; Deriaz, O.; van der Smagt, P.; Castellini, C.; Caputo, B.; Müller, H. Building the Ninapro Database: A Resource for the Biorobotics Community. In Proceedings of the 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 24–27 June 2012; pp. 1258–1265. [Google Scholar] [CrossRef]
- Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture Recognition by Instantaneous Surface EMG Images. Sci. Rep. 2016, 6, 36571. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Geng, W. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation. Sensors 2017, 17, 458. [Google Scholar] [CrossRef] [PubMed]
- Gruss, S.; Treister, R.; Werner, P.; Traue, H.C.; Crawcour, S.; Andrade, A.; Walter, S. Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines. PLoS ONE 2015, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.; Fleureau, J.; Guillotel, P.; Wendling, F.; Merlet, I.; Albera, L. Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources. IEEE Trans. Affect. Comput. 2017. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature Reduction and Selection for EMG Signal Classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Boostani, R.; Moradi, M.H. Evaluation of the Forearm EMG Signal Features for the Control of a Prosthetic Hand. Physiol. Meas. 2003, 24, 309. [Google Scholar] [CrossRef] [PubMed]
- Zardoshti-Kermani, M.; Wheeler, B.C.; Badie, K.; Hashemi, R.M. EMG Feature Evaluation for Movement Control of Upper Extremity Prostheses. IEEE Trans. Rehabilit. Eng. 1995, 3, 324–333. [Google Scholar] [CrossRef]
- Scheme, E.; Englehart, K. On the Robustness of EMG Features for Pattern Recognition Based Myoelectric Control; A Multi-Dataset Comparison. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 650–653. [Google Scholar] [CrossRef]
- Phinyomark, A.; Khushaba, R.N.; Ibáñez-Marcelo, E.; Patania, A.; Scheme, E.; Petri, G. Navigating Features: A Topologically Informed Chart of Electromyographic Features Space. J. R. Soc. Interface 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Hu, J.; Peng, Y. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks. Artif. Organs 2018, 42, E67–E77. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.M.; Lee, S. Multi-Channel Electromyography Pattern Classification Using Deep Belief Networks for Enhanced User Experience. J. Cent. South Univ. 2015, 22, 1801–1808. [Google Scholar] [CrossRef]
- Gorgolewski, K.; Margulies, D.; Milham, M. Making Data Sharing Count: A Publication-Based Solution. Front. Neurosci. 2013, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Khushaba, R.N.; Scheme, E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors 2018, 18, 1615. [Google Scholar] [CrossRef] [PubMed]
- Kamavuako, E.N.; Scheme, E.J.; Englehart, K.B. Determination of Optimum Threshold Values for EMG Time Domain Features; A Multi-Dataset Investigation. J. Neural Eng. 2016, 13, 046011. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, B.; Parker, P.; Scott, R.N. A New Strategy for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Khushaba, R.N.; Al-Timemy, A.H.; Al-Ani, A.; Al-Jumaily, A. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition. IEEE Trans. Neural Syst. Rehabilit. Eng. 2017, 25, 1821–1831. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Scheme, E. A Feature Extraction Issue for Myoelectric Control Based on Wearable EMG Sensors. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Phinyomark, A.; Quaine, F.; Laurillau, Y. The Relationship between Anthropometric Variables and Features of Electromyography Signal for Human—Computer Interface. In Applications, Challenges, and Advancements in Electromyography Signal Processing; Naik, G.R., Ed.; IGI Global: Hershey, PA, USA, 2014; Chapter 15; pp. 321–353. [Google Scholar]
- Khushaba, R.N.; Kodagoda, S. Electromyogram (EMG) Feature Reduction Using Mutual Components Analysis for Multifunction Prosthetic Fingers Control. In Proceedings of the 2012 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou, China, 5–7 December 2012; pp. 1534–1539. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Kodagoda, S.; Liu, D.; Dissanayake, G. Muscle Computer Interfaces for Driver Distraction Reduction. Comput. Methods Prog. Biomed. 2013, 110, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.D.C.; Green, G.C. Myoelectric Control Development Toolbox. In Proceedings of the 30th Conference of the Canadian Medical & Biological Engineering Society (CMBEC), Toronto, ON, Canada, 16–19 June 2007; p. M0100. [Google Scholar]
- Goge, A.R.; Chan, A.D.C. Investigating Classification Parameters for Continuous Myoelectrically Controlled Prostheses. In Proceedings of the 28th Conference of the Canadian Medical & Biological Engineering Society (CMBEC), Quebec, QC, Canada, 10–11 September 2004; pp. 141–144. [Google Scholar]
- Phinyomark, A.; Ibáñez-Marcelo, E.; Petri, G. Resting-State fMRI Functional Connectivity: Big Data Preprocessing Pipelines and Topological Data Analysis. IEEE Trans. Big Data 2017, 3, 415–428. [Google Scholar] [CrossRef]
- Atzori, M.; Gijsberts, A.; Kuzborskij, I.; Elsig, S.; Hager, A.G.M.; Deriaz, O.; Castellini, C.; Müller, H.; Caputo, B. Characterization of a Benchmark Database for Myoelectric Movement Classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 2015, 23, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography Data for Non-Invasive Naturally-Controlled Robotic Hand Prostheses. Sci. Data 2014, 1, 140053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of Six Electromyography Acquisition Setups on Hand Movement Classification Tasks. PLoS ONE 2017, 12, e0186132. [Google Scholar] [CrossRef] [PubMed]
- Palermo, F.; Cognolato, M.; Gijsberts, A.; Müller, H.; Caputo, B.; Atzori, M. Repeatability of Grasp Recognition for Robotic Hand Prosthesis Control Based on sEMG Data. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1154–1159. [Google Scholar] [CrossRef]
- Krasoulis, A.; Kyranou, I.; Erden, M.S.; Nazarpour, K.; Vijayakumar, S. Improved Prosthetic Hand Control with Concurrent Use of Myoelectric and Inertial Measurements. J. NeuroEng. Rehabilit. 2017, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Jordanić, M.; Rojas-Martínez, M.; Mañanas, M.A.; Alonso, J.F.; Marateb, H.R. A Novel Spatial Feature for the Identification of Motor Tasks Using High-Density Electromyography. Sensors 2017, 17, 1597. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Quaine, F.; Laurillau, Y.; Thongpanja, S.; Limsakul, C.; Phukpattaranont, P. EMG Amplitude Estimators Based on Probability Distribution for Muscle–Computer Interface. Fluct. Noise Lett. 2013, 12, 1350016. [Google Scholar] [CrossRef]
- Rojas-Martínez, M.; Mañanas, M.; Alonso, J.; Merletti, R. Identification of Isometric Contractions Based on High Density EMG Maps. J. Electromyogr. Kinesiol. 2013, 23, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Amma, C.; Krings, T.; Böer, J.; Schultz, T. Advancing Muscle-Computer Interfaces with High-Density Electromyography. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15), Seoul, Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 929–938. [Google Scholar] [CrossRef]
- Hwang, H.J.; Hahne, J.M.; Müller, K.R. Channel Selection for Simultaneous and Proportional Myoelectric Prosthesis Control of Multiple Degrees-of-Freedom. J. Neural Eng. 2014, 11, 056008. [Google Scholar] [CrossRef] [PubMed]
- Fougner, A.; Scheme, E.; Chan, A.D.C.; Englehart, K.; Stavdahl, Ø. Resolving the Limb Position Effect in Myoelectric Pattern Recognition. IEEE Trans. Neural Syst. Rehabilit. Eng. 2011, 19, 644–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radmand, A.; Scheme, E.; Englehart, K. On the Suitability of Integrating Accelerometry Data with Electromyography Signals for Resolving the Effect of Changes in Limb Position during Dynamic Limb Movement. J. Prosthet. Orthot. 2014, 26, 185–193. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, Rules, and Recording Techniques for the Scoring of Cyclic Alternating Pattern (CAP) in Human Sleep. Sleep Med. 2001, 2, 537–553. [Google Scholar] [CrossRef]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, Rationale, and Methods. Sleep 1997, 20, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Neptune, R.; Wright, I.; van den Bogert, A. Muscle Coordination and Function During Cutting Movements. Med. Sci. Sports Exerc. 1999, 31, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Vögele, A.M.; Zsoldos, R.R.; Krüger, B.; Licka, T. Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models. PLoS ONE 2016, 11, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Reuderink, B.; Nijholt, A.; Poel, M. Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments. In Proceedings of the Intelligent Technologies for Interactive Entertainment; Nijholt, A., Reidsma, D., Hondorp, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 221–227. [Google Scholar]
- Haufe, S.; Treder, M.S.; Gugler, M.F.; Sagebaum, M.; Curio, G.; Blankertz, B. EEG Potentials Predict Upcoming Emergency Brakings During Simulated Driving. J. Neural Eng. 2011, 8, 056001. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.A.; Picard, R.W. Detecting Stress During Real-World Driving Tasks Using Physiological Sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Abadi, M.K.; Subramanian, R.; Kia, S.M.; Avesani, P.; Patras, I.; Sebe, N. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses. IEEE Trans. Affect. Comput. 2015, 6, 209–222. [Google Scholar] [CrossRef]
- Zhang, L.; Walter, S.; Ma, X.; Werner, P.; Al-Hamadi, A.; Traue, H.C.; Gruss, S. “BioVid Emo DB”: A Multimodal Database for Emotion Analyses Validated by Subjective Ratings. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Walter, S.; Gruss, S.; Ehleiter, H.; Tan, J.; Traue, H.C.; Crawcour, S.; Werner, P.; Al-Hamadi, A.; Andrade, A.O. The BioVid Heat Pain Database Data for the Advancement and Systematic Validation of An Automated Pain Recognition System. In Proceedings of the 2013 IEEE International Conference on Cybernetics (CYBCO), Lausanne, Switzerland, 13–15 June 2013; pp. 128–131. [Google Scholar] [CrossRef]
- Demchenko, Y.; Grosso, P.; de Laat, C.; Membrey, P. Addressing Big Data Issues in Scientific Data Infrastructure. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 48–55. [Google Scholar] [CrossRef]
- Gandomi, A.; Haider, M. Beyond the Hype: Big Data Concepts, Methods, and Analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Wavelet-Based Denoising Algorithm for Robust EMG Pattern Recognition. Fluct. Noise Lett. 2011, 10, 157–167. [Google Scholar] [CrossRef]
- Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. EMG Feature Extraction for Tolerance of 50 Hz Interference. In Proceedings of the 4th PSU-UNS International Conference on Engineering Technologies, Novi Sad, Serbia, 28–30 April 2009; pp. 289–293. [Google Scholar]
- Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. EMG Feature Extraction for Tolerance of White Gaussian Noise. In Proceedings of the International Workshop and Symposium Science Technology, Nong-khai, Thailand, 15–16 December 2008. [Google Scholar]
- Luo, W.; Zhang, Z.; Wen, T.; Li, C.; Luo, Z. Features Extraction and Multi-Classification of sEMG Using A GPU-Accelerated GA/MLP Hybrid Algorithm. J. X-ray Sci. Technol. 2017, 25, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Karthick, P.; Ghosh, D.M.; Ramakrishnan, S. Surface Electromyography Based Muscle Fatigue Detection Using High-Resolution Time-Frequency Methods and Machine Learning Algorithms. Comput. Methods Prog. Biomed. 2018, 154, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Purushothaman, G.; Vikas, R. Identification of A Feature Selection Based Pattern Recognition Scheme for Finger Movement Recognition from Multichannel EMG Signals. Aust. Phys. Eng. Sci. Med. 2018, 41, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Tang, M.; Luo, Z. Feature-Level Fusion of Surface Electromyography for Activity Monitoring. Sensors 2018, 18, 614. [Google Scholar] [CrossRef] [PubMed]
- Englehart, K.; Hudgin, B.; Parker, P.A. A Wavelet-Based Continuous Classification Scheme for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 2001, 48, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.U.; Moon, I.; Lee, Y.J.; Kim, S.K.; Mun, M.S. A Supervised Feature-Projection-Based Real-Time EMG Pattern Recognition for Multifunction Myoelectric Hand Control. IEEE/ASME Trans. Mechatron. 2007, 12, 282–290. [Google Scholar] [CrossRef]
- Chu, J.U.; Moon, I.; Mun, M.S. A Real-Time EMG Pattern Recognition System Based on Linear-Nonlinear Feature Projection for a Multifunction Myoelectric Hand. IEEE Trans. Biomed. Eng. 2006, 53, 2232–2239. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C. Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification. Meas. Sci. Rev. 2012, 12, 82–89. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Li, G.; Lock, B.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A.; Englehart, K.B. Targeted Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms. JAMA 2009, 301, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Scheme, E.J.; Englehart, K.B. Validation of a Selective Ensemble-Based Classification Scheme for Myoelectric Control Using a Three-Dimensional Fitts’ Law Test. IEEE Trans. Neural Syst. Rehabilit. Eng. 2013, 21, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Sapsanis, C.; Georgoulas, G.; Tzes, A.; Lymberopoulos, D. Improving EMG Based Classification of Basic Hand Movements Using EMD. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5754–5757. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Kodagoda, S.; Takruri, M.; Dissanayake, G. Toward Improved Control of Prosthetic Fingers Using Surface Electromyogram (EMG) Signals. Expert Syst. Appl. 2012, 39, 10731–10738. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B. BioPatRec: A Modular Research Platform for the Control of Artificial Limbs Based on Pattern Recognition Algorithms. Source Code Biol. Med. 2013, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Mastinu, E.; Ortiz-Catalan, M.; Håkansson, B. Analog Front-Ends Comparison in the Way of A Portable, Low-Power and Low-Cost EMG Controller Based on Pattern Recognition. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2111–2114. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B. Evaluation of Classifier Topologies for the Real-Time Classification of Simultaneous Limb Motions. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6651–6654. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. Real-Time Classification of Simultaneous Hand and Wrist Motions Using Artificial Neural Networks with Variable Threshold Outputs. In Proceedings of the XXXIV International Conference on Artificial Neural Networks (ICANN), Amsterdam, The Netherlands, 15–16 May 2013; pp. 1159–1164. [Google Scholar]
- Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. Real-Time and Simultaneous Control of Artificial Limbs Based on Pattern Recognition Algorithms. IEEE Trans. Neural Syst. Rehabilit. Eng. 2014, 22, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Khushaba, R.N.; Takruri, M.; Miro, J.V.; Kodagoda, S. Towards Limb Position Invariant Myoelectric Pattern Recognition Using Time-Dependent Spectral Features. Neural Netw. 2014, 55, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Al-Timemy, A.H.; Khushaba, R.N.; Bugmann, G.; Escudero, J. Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees. IEEE Trans. Neural Syst. Rehabilit. Eng. 2016, 24, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, H.; Li, G.; Zhu, X. A Multichannel Surface EMG System for Hand Motion Recognition. Int. J. Hum. Robot. 2015, 12, 1550011. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Investigating Long-Term Effects of Feature Extraction Methods for Continuous EMG Pattern Classification. Fluct. Noise Lett. 2012, 11, 1250028. [Google Scholar] [CrossRef]
- Cantú-Paz, E.; Goldberg, D.E. Efficient Parallel Genetic Algorithms: Theory and Practice. Comput. Methods Appl. Mech. Eng. 2000, 186, 221–238. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, Y. GPU-Based Parallel Particle Swarm Optimization. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 1493–1500. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, B. Big Data Dimension Reduction Using PCA. In Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November 2016; pp. 152–157. [Google Scholar] [CrossRef]
- Vogt, F.; Tacke, M. Fast Principal Component Analysis of Large Data Sets. Chemom. Intell. Lab. Syst. 2001, 59, 1–18. [Google Scholar] [CrossRef]
- Singh, G.; Memoli, F.; Carlsson, G. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In Proceedings of the Eurographics Symposium on Point-Based Graphics, Prague, Czech Republic, 2–3 September 2007. [Google Scholar]
- Nicolau, M.; Levine, A.J.; Carlsson, G. Topology Based Data Analysis Identifies A Subgroup of Breast Cancers with A Unique Mutational Profile and Excellent Survival. Proc. Natl. Acad. Sci. USA 2011, 108, 7265–7270. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Ibáñez-Marcelo, E.; Petri, G. Topological Data analysis of Biomedical Big Data. In Signal Processing and Machine Learning for Biomedical Big Data; Sejdic, E., Falk, T.H., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Chapter 11; pp. 209–234. [Google Scholar]
- Oskoei, M.A.; Hu, H. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Trans. Biomed. Eng. 2008, 55, 1956–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S.; Choi, H.H.; Moon, C.S.; Mun, C.W. Comparison of k-Nearest Neighbor, Quadratic Discriminant and Linear Discriminant Analysis in Classification of Electromyogram Signals Based on the Wrist-Motion Directions. Curr. Appl. Phys. 2011, 11, 740–745. [Google Scholar] [CrossRef]
- Verikas, A.; Vaiciukynas, E.; Gelzinis, A.; Parker, J.; Olsson, M.C. Electromyographic Patterns During Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness. Sensors 2016, 16, 592. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Yu, D.; Platt, J. Scalable Stacking and Learning for Building Deep Architectures. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2133–2136. [Google Scholar] [CrossRef]
- Hutchinson, B.; Deng, L.; Yu, D. Tensor Deep Stacking Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1944–1957. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.; Corrado, G.S.; Monga, R.; Chen, K.; Devin, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.; Senior, A.; Tucker, P.; et al. Large Scale Distributed Deep Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1223–1231. [Google Scholar]
- Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A Survey on Deep Learning for Big Data. Inf. Fusion 2018, 42, 146–157. [Google Scholar] [CrossRef]
- Hartwell, A.; Kadirkamanathan, V.; Anderson, S.R. Compact Deep Neural Networks for Computationally Efficient Gesture Classification From Electromyography Signals. arXiv, 2018; arXiv:1806.08641. [Google Scholar]
- Gheisari, M.; Wang, G.; Bhuiyan, M.Z.A. A Survey on Deep Learning in Big Data. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 2, pp. 173–180. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.M.; An, H.; Lee, S.; Lee, E.H.; Min, H.K.; Lee, S. EMG Pattern Classification by Split and Merge Deep Belief Network. Symmetry 2016, 8, 148. [Google Scholar] [CrossRef]
- Wand, M.; Schultz, T. Pattern Learning with Deep Neural Networks in EMG-Based Speech Recognition. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4200–4203. [Google Scholar] [CrossRef]
- Wand, M.; Schmidhuber, J. Deep Neural Network Frontend for Continuous EMG-Based Speech Recognition. In Proceedings of the 17th Annual Conference of the International Speech Communication Association (Interspeech), San Francisco, CA, USA, 8–12 September 2016; pp. 3032–3036. [Google Scholar]
- Kawde, P.; Verma, G.K. Deep Belief Network Based Affect Recognition from Physiological Signals. In Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, India, 26–28 October 2017; pp. 587–592. [Google Scholar] [CrossRef]
- Said, A.B.; Mohamed, A.; Elfouly, T.; Harras, K.; Wang, Z.J. Multimodal Deep Learning Approach for Joint EEG-EMG Data Compression and Classification. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Cheng, Y.; Xi, N. Surface EMG Based Continuous Estimation of Human Lower Limb Joint Angles By Using Deep Belief Networks. Biomed. Signal Process. Control 2018, 40, 335–342. [Google Scholar] [CrossRef]
- Côté-Allard, U.; Nougarou, F.; Fall, C.L.; Giguère, P.; Gosselin, C.; Laviolette, F.; Gosselin, B. A Convolutional Neural Network for Robotic Arm Guidance Using sEMG Based Frequency-Features. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2464–2470. [Google Scholar] [CrossRef]
- Côté-Allard, U.; Fall, C.L.; Campeau-Lecours, A.; Gosselin, C.; Laviolette, F.; Gosselin, B. Transfer Learning for sEMG Hand Gestures Recognition Using Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 1663–1668. [Google Scholar] [CrossRef]
- Zhai, X.; Jelfs, B.; Chan, R.H.M.; Tin, C. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network. Front. Neurosci. 2017, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Atzori, M.; Cognolato, M.; Müller, H. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Front. Neurorobot. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Laezza, R. Deep Neural Networks for Myoelectric Pattern Recognition An Implementation for Multifunctional Control. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018. [Google Scholar]
- Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep Learning for Healthcare Applications Based on Physiological Signals: A Review. Comput. Methods Prog. Biomed. 2018, 161, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 2016, 17, 2030–2096. [Google Scholar]
- Park, K.H.; Lee, S.W. Movement Intention Decoding Based on Deep Learning for Multiuser Myoelectric Interfaces. In Proceedings of the 2016 4th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea, 22–24 February 2016; pp. 1–2. [Google Scholar] [CrossRef]
Dataset | Test Conditions | Subjects | Number of Movements | Number of Repetitions | Total Number of Trials | Time Per Trial (s) | Number of Electrodes | Sampling Rate (Hz) | Filtering (Hz) | Resolution (bits) |
---|---|---|---|---|---|---|---|---|---|---|
Sapsanis et al. [76] | A small number of EMG channels | 5N (2M 3F) | 6 | 30 | 900 | 6 | 2 | 500 | BPF 15–500, NF at 50 | 14 |
Khushaba et al. 1 [77] | A small number of EMG channels | 8N (6M 2F) | 10 | 6 | 480 | 5 | 2 | 4000 | - | 12 |
Ortiz-Catalan et al. 1 [78] | EMG armband | 20N (10M 10F) | 10 + rest | 3 | 600 | 3 | 4 | 2000 | BPF 20–400, NF at 50 | 14 |
Mastinu et al. [79] | EMG armband, Acquisition system (3 sets) | 8N (6M 2F) | 10 + rest | 3 | 720 | 3 | 4 | 2000 | - | 16 |
Ortiz-Catalan et al. 2 [80] | EMG armband | 6N (3M 3F) | 26 + rest | 3 | 468 | 3 | 8 | 2000 | BPF 20–400, NF at 50 | 16 |
Ortiz-Catalan et al. 3 [81] | EMG armband | 7N (6M 1F) | 26 + rest | 3 | 546 | 3 | 8 | 2000 | BPF 20–400, NF at 50 | 16 |
Ortiz-Catalan et al. 4 [82] | EMG armband | 17N (11M 6F) | 26 + rest | 3 | 1326 | 3 | 8 | 2000 | BPF 20–400, NF at 50 | 16 |
Khushaba et al. 2 [32] | EMG armband | 8N (6M 2F) | 15 | 3 (out of 6) | 360 | 20 | 8 | 4000 | - | 12 |
Khushaba et al. 3 [33] | EMG armband | 8N (7M 1F) | 14 | 4 (out of 6) | 448 | 5 | 8 | 4000 | - | 12 |
Khushaba et al. 4 [83] | Limb position (5 positions), EMG armband | 11N (9M 2F) | 7 + rest | 6 | 2310 | 5 | 7 | 4000 | - | 12 |
Khushaba et al. 5 [10] | Forearm orientation (3 orientations), Contraction intensity (3 levels), EMG armband | 10N | 6 + rest | 3 | 1620 | 5 | 6 | 4000 | - | 12 |
Al-Timemy et al. [84] | Amputation, Contraction intensity (3 levels), EMG armband | 9A (7M 2F) | 6 | 5–11 | 1077 | 8–12 | 8 | 2000 | - | 16 |
Côté-Allard et al. [11] | Between-day (2 days), EMG armband | 40N (28M 12F) | 6 + rest | 4–12 | 3744 | 5 | 8 | 200 | NF at 50 | 8 |
Chan et al. [34,35] e | Between-day (4 days) | 30N | 6 + rest | 24 | 17,280 | 3 | 8 | 3000 | BPF 1–1000 | 12 |
ISRMyo-I [85] | Between-day (10 days), EMG armband | 6N | 12 + rest | 2 | 1440 | 10 | 16 | 1000 | n/a | n/a |
Dataset | Test Conditions | Subjects | Number of Movements | Number of Repetitions | Total Number of Trials | Time Per Trial (s) | Number of Electrodes | Sampling Rate (Hz) | Filtering (Hz) | Resolution (bits) |
---|---|---|---|---|---|---|---|---|---|---|
Ninapro 1 [37] | EMG armband | 27N (20M 7F) | 52 + rest | 10 | 14,040 | 5 | 10 | 100 | RMS, LPF at 5 | 12 |
Ninapro 2 [38] | EMG armband | 40N (28M 12F) | 49 + rest | 6 | 11,760 | 5 | 12 | 2000 | NF at 50 | 16 |
Ninapro 3 [38] | Amputation, EMG armband | 11A (11M) | 49 + rest | 6 | 3234 | 5 | 12 | 2000 | NF at 50 | 16 |
Ninapro 4 [39] | EMG armband | 10N (6M 4F) | 52 + rest | 6 | 3120 | 5 | 12 | 2000 | BPF 10–1000 NF at 50 | 16 |
Ninapro 5 [39] | EMG armband | 10N (8M 2F) | 52 + rest | 6 | 3120 | 5 | 16 | 200 | NF at 50 | 8 |
Ninapro 6 [40] | Between-day (5 days), EMG armband | 10N (7M 3F) | 7 + rest | 12 × 2 = 24 | 8400 | 4 | 14 | 2000 | NF at 50 | 16 |
Ninapro 7 [41] | Amputation, EMG armband | 20N 2A | 40 + rest | 6 | 5280 | 5 | 12 | 2000 | NF at 50 | 16 |
Dataset | Test Conditions | Subjects | Number of Movements | Number of Repetitions | Total Number of Trials | Time Per Trial (s) | Number of Electrodes | Sampling Rate (Hz) | Filtering (Hz) | Resolution (bits) |
---|---|---|---|---|---|---|---|---|---|---|
mmGest [12] | Between-day (5 days), HD-sEMG | 5N (4M 1F) | 12 + rest | 15 | 4500 | ≈1.1 | 1000 | - | 12 | |
CapgMyo (DB-a) [15] | HD-sEMG | 18N | 8 + rest | 10 | 1440 | 3–10 | 1000 | BPF 20–380 BSF 45–55 | 16 | |
CapgMyo (DB-b) [15] | Between-day (2 days), HD-sEMG | 10N | 8 + rest | 10 | 1600 | 3 | 1000 | BPF 20–380 BSF 45–55 | 16 | |
CapgMyo (DB-c) [15] | HD-sEMG | 10N | 12 + rest | 10 | 1200 | 3 | 1000 | BPF 20–380 BSF 45–55 | 16 | |
csl-hdemg [45] | Between-day (5 days), HD-sEMG | 5N (4M 1F) | 26 + rest | 10 | 6500 | 3 | 2048 | BPF 20–400 | 16 |
Dataset | Research Problem | Affective States | Types of Data | Subjects | Time Duration | EMG Channels | Sampling Rate (Hz) |
---|---|---|---|---|---|---|---|
Healey and Picard [55] | Driver stress recognition | 3 levels of stress | EMG, ECG, GSR, Resp, facial video | 17 of 24N | 54–93 min | 1 (tEMG) | 15.5 |
DEAP [57] | Affect recognition based music video stimuli | 4 quadrants of the valence-arousal space | EMG, BVP, GSR, Resp, Temp, EOG, EEG, facial video | 32N (16M 16F) | -min | 2 (tEMG, zEMG) | 512 |
DECAF [58] | Affect recognition based music video and movie stimuli | 4 quadrants of the valence-arousal space | EMG, ECG, EOG, MEG, facial video | 30N (16M 14F) | min, s | 1 (tEMG) | 1000 |
HR-EEG4EMO [17] | Affect recognition based film stimuli | 2 classes of the valence space | EMG, ECG, GSR, Resp, SpO2, PR, EEG | 40N (31M 9F) | s − 6 min | Electrodes located on the cheeks | 1000 |
BioVid Emo DB [59] e | Affect recognition based film stimuli | 5 discrete emotions | EMG, ECG, GSR, facial video | 86 of 94N (44M 50F) | − 245 s | 1 (tEMG) | 512 |
BioVid [60] e | Heat pain recognition | 5 levels of pain intensity | EMG, ECG, GSR, EEG, facial video | 86 of 90N (45M 45F) | s | 3 (tEMG, zEMG, cEMG) | 512 |
Ref. | Deep Learning Model | Deep Learning Software | Input Data (Window Size/Overlap) | Application | Test Conditions | Dataset (Number of Subjects) | Results |
---|---|---|---|---|---|---|---|
[24] | UPN: DBN | DeepLearnToolbox | Time domain features (166 ms/83 ms) | Motion recognition | - | Local data set (28) 2 EMG channels | DBN > SVM > LDA |
[105] | UPN: SM-DBN | DeepLearnToolbox | Time domain features (166 ms/83 ms) | Motion recognition | - | Local data set (28) 2 EMG channels | SM-DBN > DBN |
[106] | UPN | Original scripts by Hinton | Time domain features (27 ms/10 ms) | Silent speech interface | - | EMG-Array (20) 2 arrays: | UPN > GMM |
[107] | UPN | PyLSTM (in-house toolbox) | Time domain features (27 ms/10 ms) | Silent speech interface | - | EMG-UKA (11) 6 EMG channels | UPN > GMM |
[108] | UPN: DBN | n/a | Raw EMG (1 min) | Emotion recognition | Multiple modalities | DEAP | Multi-modal > EEG |
[109] | UPN: SAE | n/a | Raw EMG | Data compression | Multiple modalities | DEAP | SAE > DWT, CS |
[110] | UPN: DBN | n/a | Full-wave rectified EMG (sub-sampled with 100 Hz) | Joint angle estimation | Regression | Local dataset (6) 10 EMG channels | DBN > PCA |
[14] | CNN | MXNet | sEMG image | Motion recognition | - | CapgMyo DB-a, csl-hdemg, Ninapro 1,2 | CNN > LDA, SVM, KNN, MLP, RF (using instantaneous values) |
[15] | CNN | MXNet | sEMG image | Motion recognition | Inter-subject, Between-day | CapgMyo DB-a,b,c, csl-hdemg, Ninapro 1 | CNN > LDA, SVM, KNN, RF (using instantaneous values) |
[111] | CNN | Theano e | Time–frequency features (285 ms/20 ms) | Motion recognition | Inter-subject, Between-day | Côté-Allard et al. (18) | offline: 97.71%, online: 93.14% |
[112] | CNN | Theano e | Time–frequency features (260 ms/25 ms) | Motion recognition | Inter-subject | Côté-Allard et al. (35) | offline: 97.81% |
[11] | CNN | Theano e | Time-frequency features (260 ms/25 ms) | Motion recognition | Inter-subject, Between-day | Côté-Allard et al. (36), Ninapro 5 | Côté-Allard et al.: 98.31% (for 7 motion classes), Ninapro 5: 65.57% (for 18 motion classes) |
[113] | CNN | MatConvNet | Time-frequency features (200 ms/100 ms) | Motion recognition | Amputation | Ninapro 2,3 | CNN > SVM |
[114] | CNN | MatConvNet | Raw EMG (150 ms) | Motion recognition | Amputation | Ninapro 1,2,3 | Ninapro 1,2: RF > CNN Ninapro 3: SVM > CNN |
[118] | CNN | n/a | Raw EMG (200 ms) | Motion recognition | Inter-subject | Ninapro 1 | CNN > SVM |
[102] | CNN | Keras + TensorFlow | Raw EMG (150 ms/5 ms) | Motion recognition | Compact architecture | Local data set (10) 8 + 5 EMG channels | CNN > SVM |
[23] | RNN + CNN | n/a | Time-frequency features (50 ms/30 ms) | Joint angle estimation | Regression | Local data set (8) 5 EMG channels | RNN + CNN > CNN, SVR |
[115] | RNN | CNTK | Time domain features (200 ms/150 ms) | Motion recognition | Amputation | Ninapro 7 | RNN > RNN + CNN > CNN |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phinyomark, A.; Scheme, E. EMG Pattern Recognition in the Era of Big Data and Deep Learning. Big Data Cogn. Comput. 2018, 2, 21. https://doi.org/10.3390/bdcc2030021
Phinyomark A, Scheme E. EMG Pattern Recognition in the Era of Big Data and Deep Learning. Big Data and Cognitive Computing. 2018; 2(3):21. https://doi.org/10.3390/bdcc2030021
Chicago/Turabian StylePhinyomark, Angkoon, and Erik Scheme. 2018. "EMG Pattern Recognition in the Era of Big Data and Deep Learning" Big Data and Cognitive Computing 2, no. 3: 21. https://doi.org/10.3390/bdcc2030021
APA StylePhinyomark, A., & Scheme, E. (2018). EMG Pattern Recognition in the Era of Big Data and Deep Learning. Big Data and Cognitive Computing, 2(3), 21. https://doi.org/10.3390/bdcc2030021